Background: Integrase (IN) of the type 1 human immunodeficiency virus (HIV-1) catalyzes the integration of viral DNA into host cellular DNA. We identified a bi-helix motif (residues 149-186) in the crystal structure of the catalytic core (CC) of the IN-Phe185Lys variant that consists of the alpha(4) and alpha(5) helices connected by a 3 to 5-residue turn. The motif is embedded in a large array of interactions that stabilize the monomer and the dimer.
View Article and Find Full Text PDFThe peptide denoted K159 (30 residues) derives from the catalytic core (CC) sequence of HIV-1 integrase (IN, residues 147-175). In the crystal structure of CC, the corresponding segment belongs to the alpha4 helix (residues 148-168, including residues Glu 152, Lys 156 and Lys 159, crucial for enzyme activity and DNA recognition), a loop (residues 169-171) and a part of the alpha5 helix (171-175), involved in enzyme dimerization. We used the fluorescence and the circular dichroism (CD) properties in the near-UV of the aromatic side chain of a tyrosine residue added at the C-terminal end of K159 in order to analyze the behavior of the concentrated and diluted peptide in aqueous trifluoroethanol (TFE), in an attempt to connect the information obtainable at high (NMR), medium (CD) and low (fluorescence) concentrations of the peptide.
View Article and Find Full Text PDFThe last decade has contributed to our understanding of the three-dimensional structure of the human immunodeficiency virus, type 1 (HIV-1) integrase (IN) and to the description of how the enzyme catalyzes the viral DNA integration into the host DNA. Recognition of the viral DNA termini by IN is sequence-specific, and that of the host DNA does not require particular sequence, although in physicochemical studies IN fails to discriminate between the two interactions. Here, such discrimination was allowed thanks to a model system using designed oligonucleotides and peptides as binding structures.
View Article and Find Full Text PDF