Publications by authors named "Hayaru Shouno"

It is well-understood that the performance of Deep Convolutional Neural Networks (DCNNs) in image recognition tasks is influenced not only by shape but also by texture information. Despite this, understanding the internal representations of DCNNs remains a challenging task. This study employs a simplified version of the Portilla-Simoncelli Statistics, termed "minPS," to explore how texture information is represented in a pre-trained VGG network.

View Article and Find Full Text PDF

In image classification, a deep neural network (DNN) that is trained on undistorted images constitutes an effective decision boundary. Unfortunately, this boundary does not support distorted images, such as noisy or blurry ones, leading to accuracy drop-off. As a simple approach for classifying distorted images as well as undistorted ones, previous methods have optimized the trained DNN again on both kinds of images.

View Article and Find Full Text PDF

We develop an automatic peak fitting algorithm using the Bayesian information criterion (BIC) fitting method with confidence-interval estimation in spectral decomposition. First, spectral decomposition is carried out by adopting the Bayesian exchange Monte Carlo method for various artificial spectral data, and the confidence interval of fitting parameters is evaluated. From the results, an approximated model formula that expresses the confidence interval of parameters and the relationship between the peak-to-peak distance and the signal-to-noise ratio is derived.

View Article and Find Full Text PDF

The statistical dependencies that independent component analysis (ICA) cannot remove often provide rich information beyond the linear independent components. It would thus be very useful to estimate the dependency structure from data. While such models have been proposed, they have usually concentrated on higher-order correlations such as energy (square) correlations.

View Article and Find Full Text PDF

We develop a hyperparameter inference method for image reconstruction from Radon transform which often appears in the computed tomography, in the manner of Bayesian inference. Hyperparameters are often introduced in Bayesian inference to control the strength ratio between prior information and the fidelity to the observation. Since the quality of the reconstructed image is controlled by the estimation accuracy of these hyperparameters, we apply Bayesian inference into the filtered back-projection (FBP) reconstruction method with hyperparameters inference and demonstrate that the estimated hyperparameters can adapt to the noise level in the observation automatically.

View Article and Find Full Text PDF