The purpose of this study was to conduct a correlative assessment of SARS-CoV-2 RNA concentrations in wastewater with COVID-19 cases and a systematic evaluation of the effect of using different virus concentration methods and recovery and normalization approaches. We measured SARS-CoV-2 RNA concentrations at two different wastewater treatment plants (WWTPs) in the Bexar County of Texas from October 2020 to May 2021 (32 weeks) using reverse transcription droplet digital PCR (RT-ddPCR). We evaluated three different adsorption-extraction (AE) based virus concentration methods (acidification, addition of MgCl, or without any pretreatment) using bovine coronavirus (BCoV) as surrogate virus and observed that the direct AE method showed the highest mean recovery.
View Article and Find Full Text PDFThe COVID-19 pandemic has been challenging for various institutions such as school systems due to widespread closures. As schools re-open their campuses to in-person education, there is a need for frequent screening and monitoring of the virus to ensure the safety of students and staff and to limit risk to the surrounding community. Wastewater surveillance (WWS) of SARS-CoV-2 is a rapid and economical approach to determine the extent of COVID-19 in the community.
View Article and Find Full Text PDFThe purpose of this study was to conduct a preliminary assessment of the levels of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater at the Salitrillo Wastewater Treatment Plant in Texas during the initial peak of coronavirus disease 2019 (COVID-19) outbreak. Raw wastewater influent (24 h composite, time-based 1 L samples, = 13) was collected weekly during June-August 2020. We measured SARS-CoV-2 RNA in wastewater by reverse transcription droplet digital PCR using the same N1 and N2 primer sets as employed in COVID-19 clinical testing.
View Article and Find Full Text PDF