Publications by authors named "Hawraa Bzeih"

Both paralogs of the calcium-dependent activator protein for secretion (CAPS) are required for exocytosis of synaptic vesicles (SVs) and large dense core vesicles (LDCVs). Despite approximately 80% sequence identity, CAPS1 and CAPS2 have distinct functions in promoting exocytosis of SVs and LDCVs in dorsal root ganglion (DRG) neurons. However, the molecular mechanisms underlying these differences remain enigmatic.

View Article and Find Full Text PDF

Cytotoxic T lymphocytes patrol our body in search for infected cells which they kill through the release of cytotoxic substances contained in cytotoxic granules. The fusion of cytotoxic granules occurs at a specially formed contact site, the immunological synapse, and is tightly controlled to ensure specificity. In this review, we discuss the contribution of two intracellular compartments, endosomes and cytotoxic granules, to the formation, function and disassembly of the immunological synapse.

View Article and Find Full Text PDF

CTLs are serial killers that kill multiple target cells via exocytosis of cytotoxic granules (CGs). CG exocytosis is tightly regulated and has been investigated in great detail; however, whether CG proteins are endocytosed following exocytosis and contribute to serial killing remains unknown. By using primary CTLs derived from a knock-in mouse of the CG membrane protein Synaptobrevin2, we show that CGs are endocytosed in a clathrin- and dynamin-dependent manner.

View Article and Find Full Text PDF

Cytotoxic T lymphocytes (CTLs) form an integral part of the adaptive immune system. Their main function is to eliminate bacteria- and virus-infected target cells by releasing perforin and granzymes (the lethal hit) contained within lytic granules (LGs), at the CTL-target-cell interface [the immunological synapse (IS)]. The formation of the IS as well as the final events at the IS leading to target-cell death are both highly complex and dynamic processes.

View Article and Find Full Text PDF