Publications by authors named "Hawon Cho"

Itch is an unpleasant sensation that evokes a desire to scratch. Pathologic conditions such as allergy or atopic dermatitis produce severe itching sensation. Mas-related G protein receptors (Mrgprs) are receptors for many endogenous pruritogens.

View Article and Find Full Text PDF

Recent parallel studies clearly indicated that Merkel cells and the mechanosensitive piezo2 ion channel play critical roles in the light-touch somatosensation. Moreover, piezo2 was suggested to be a light-touch sensing ion channel without a role in pain sensing in mammals. However, biophysical characteristics of piezo2, such as single channel conductance and sensitivities to various mechanical stimuli, are unclear, hampering a precise understanding of its role in touch sensation.

View Article and Find Full Text PDF

Cl(-) efflux through Ca(2+)-activated Cl(-) channels (CaCCs) in secretory epithelial cells plays a key role in the regulation of fluid secretion. The fluid and electrolyte secretion is closely related to intracellular pH. CaCCs have been known to be inhibited by intracellular acid.

View Article and Find Full Text PDF

Anoctamin 1 (ANO1)/TMEM16A is a Cl(-) channel activated by intracellular Ca(2+) mediating numerous physiological functions. However, little is known of the ANO1 activation mechanism by Ca(2+). Here, we demonstrate that two helices, "reference" and "Ca(2+) sensor" helices in the third intracellular loop face each other with opposite charges.

View Article and Find Full Text PDF

Background: Various pathological conditions such as inflammation or injury can evoke pain hypersensitivity. That represents the response to innocuous stimuli or exaggerated response to noxious stimuli. The molecular mechanism based on the pain hypersensitivity is associated with changes in many of ion channels in dorsal-root ganglion (DRG) neurons.

View Article and Find Full Text PDF

Vertebrates can sense and avoid noxious heat that evokes pain. Many thermoTRP channels are associated with temperature sensation. TRPV1 is a representative ion channel that is activated by noxious heat.

View Article and Find Full Text PDF

Background: The quantification of pain intensity in vivo is essential for identifying the mechanisms of various types of pain or for evaluating the effects of different analgesics. A variety of behavioral tests for pain measurement have been devised, but many are limited because animals are physically restricted, which affects pain sensation. In this study, pain assessment was attempted with minimal physical restriction, and voluntary movements of unrestrained animals were used to evaluate the intensities of various types of pain.

View Article and Find Full Text PDF

Nociceptors are a subset of small primary afferent neurons that respond to noxious chemical, thermal and mechanical stimuli. Ion channels in nociceptors respond differently to noxious stimuli and generate electrical signals in different ways. Anoctamin 1 (ANO1 also known as TMEM16A) is a Ca(2+)-activated chloride channel that is essential for numerous physiological functions.

View Article and Find Full Text PDF

Spinal muscular atrophy and hereditary motor and sensory neuropathies are characterized by muscle weakness and atrophy caused by the degenerations of peripheral motor and sensory nerves. Recent advances in genetics have resulted in the identification of missense mutations in TRPV4 in patients with these hereditary neuropathies. Neurodegeneration caused by Ca(2+) overload due to the gain-of-function mutation of TRPV4 was suggested as the molecular mechanism for the neuropathies.

View Article and Find Full Text PDF

Transient receptor potential ion channels (TRPs) expressed in the periphery sense and electrically transduce noxious stimuli to transmit the signals to the brain. Many natural and synthetic ligands for the sensory TRPs have been found, but little is known about endogenous inhibitors of these TRP channels. Recently, we reported that farnesyl pyrophosphate, an endogenous substance produced in the mevalonate pathway, is a specific activator for TRPV3.

View Article and Find Full Text PDF

Temperature-sensitive transient receptor potential ion channels (thermoTRPs) expressed in epidermal keratinocytes and sensory afferents play an important role as peripheral pain detectors for our body. Many natural and synthetic compounds have been found to act on the thermoTRPs leading to altered nociception, but little is known about endogenous painful molecules activating TRPV3. Here, we show that farnesyl pyrophosphate (FPP), an intermediate metabolite in the mevalonate pathway, specifically activates TRPV3 among six thermoTRPs using Ca(2+) imaging and electrophysiology with cultured keratinocytes and TRPV3-overexpressing cells.

View Article and Find Full Text PDF

Calcium (Ca(2+))-activated chloride channels are fundamental mediators in numerous physiological processes including transepithelial secretion, cardiac and neuronal excitation, sensory transduction, smooth muscle contraction and fertilization. Despite their physiological importance, their molecular identity has remained largely unknown. Here we show that transmembrane protein 16A (TMEM16A, which we also call anoctamin 1 (ANO1)) is a bona fide Ca(2+)-activated chloride channel that is activated by intracellular Ca(2+) and Ca(2+)-mobilizing stimuli.

View Article and Find Full Text PDF

Mechanosensitive channels mediate various physiological functions including somatic sensation or pain. One of the peptide toxins isolated from the venom of the Chilean rose tarantula spider (Grammostola spatulata), mechanotoxin 4 (GsMTx4) is known to block stretch-activated cation channels. Since mechanosensitive channels in sensory neurons are thought to be molecular sensors for mechanotransduction, i.

View Article and Find Full Text PDF

Sanshools are major active ingredients of Zanthoxylum piperitum and are used as food additives in East Asia. Sanshools cause irritant, tingling and sometimes paresthetic sensations on the tongue. However, the molecular mechanism underlying the pungent or tingling sensation induced by sanshools is not known.

View Article and Find Full Text PDF

Mechanosensitive (MS) channels are ion channels gated by different types of mechanical stimuli. MS channels in sensory neurons are thought to be molecular transducers for somatic sensations such as touch, pressure, proprioception and pain. Previously, we reported that two types of MS channels are present in sensory neurons.

View Article and Find Full Text PDF

TRPV1, a cloned capsaicin receptor, is a molecular sensor for detecting adverse stimuli and a key element for inflammatory nociception and represents biophysical properties of native channel. However, there seems to be a marked difference between TRPV1 and native capsaicin receptors in the pharmacological response profiles to vanilloids or acid. One plausible explanation for this overt discrepancy is the presence of regulatory proteins associated with TRPV1.

View Article and Find Full Text PDF

Seventeen biarylcarboxybenzamide derivatives were prepared for the study of their agonistic/antagonistic activities to the vanilloid receptor (VR1) in rat DRG neurons. The replacement of the piperazine moiety of the lead compound 1 with phenyl ring showed quite enhanced antagonistic activity. Among the prepared derivatives, N-(4-tert-butylphenyl)-4-pyridine-2-yl-benzamide (2, IC(50)=31 nM) and N-(4-tert-butylphenyl)-4-(3-methylpyridine-2-yl)benzamide (3g, IC(50)=31 nM), showed 5-fold higher antagonistic activity than 1 in (45)Ca(2+)-influx assay.

View Article and Find Full Text PDF

Hearing in Drosophila depends on the transduction of antennal vibration into receptor potentials by ciliated sensory neurons in Johnston's organ, the antennal chordotonal organ. We previously found that a Drosophila protein in the vanilloid receptor subfamily (TRPV) channel subunit, Nanchung (NAN), is localized to the chordotonal cilia and required to generate sound-evoked potentials (Kim et al., 2003).

View Article and Find Full Text PDF

A series of N-4-methansulfonamidobenzyl-N'-2-substituted-4-tert-butylbenzyl thioureas were prepared for the study of their agonistic/antagonistic activities to the vanilloid receptor in rat DRG neurons. Their structure-activity relationship reveals that there is a space for another hydrophobic binding interaction around 2-position in 4-tert-butylbenzyl region. Among the prepared derivatives, 6n show the highest antagonistic activity against the vanilloid receptor (IC(50)=15 nM).

View Article and Find Full Text PDF

A series of N-4-substituted-benzyl-N'-tert-butylbenzyl thioureas were prepared for the study of their agonistic/antagonistic activities to the vanilloid receptor in rat DRG neurons. Their structure-activity relationship reveals that not only the two oxygens and amide hydrogen of sulfonamido group, but also the optimal size of methyl in methanesulfonamido group play an integral role for the antagonistic activity on vanilloid receptor.

View Article and Find Full Text PDF

Vanilloid receptor 1 (VR1), a capsaicin receptor, is known to play a major role in mediating inflammatory thermal nociception. Although the physiological role and biophysical properties of VR1 are known, the mechanism of its activation by ligands is poorly understood. Here we show that VR1 must be phosphorylated by Ca2+-calmodulin dependent kinase II (CaMKII) before its activation by capsaicin.

View Article and Find Full Text PDF

Ion channels in sensory neurons are molecular sensors that detect external stimuli and transduce them to neuronal signals. Although Ca2+-activated nonselective cation (CAN) channels were found in many cell types, CAN channels in mammalian sensory neurons are not yet identified. In the present study, we describe an ion channel that is activated by intracellular Ca2+ in cultured rat sensory neurons.

View Article and Find Full Text PDF

Twenty-seven N,N',N"-trisubstituted thiourea derivatives were prepared. Among them, 1-[3-(4'-hydroxy-3'-methoxy-phenyl)-propyl]-1,3-diphenethyl-thiourea (8l, IC(50)=0.32 microM), showed 2-fold higher antagonistic activity than that of capsazepine (3, IC(50)=0.

View Article and Find Full Text PDF

Vanilloid receptor 1 (VR1), a ligand-gated ion channel activated by vanilloids, acid, and heat, is a molecular detector that integrates multiple modes of pain. Although the function and the biophysical properties of the channel are now known, the regions of VR1 that recognize ligands are largely unknown. By the stepwise deletion of VR1 and by chimera construction using its capsaicin-insensitive homologue, VRL1, we localized key amino acids, Arg-114 and Glu-761, in the N- and C-cytosolic tails, respectively, that determine ligand binding.

View Article and Find Full Text PDF

The capsaicin-sensitive vanilloid receptor (VR1) was recently shown to play an important role in inflammatory pain (hyperalgesia), but the underlying mechanism is unknown. We hypothesized that pain-producing inflammatory mediators activate capsaicin receptors by inducing the production of fatty acid agonists of VR1. This study demonstrates that bradykinin, acting at B2 bradykinin receptors, excites sensory nerve endings by activating capsaicin receptors via production of 12-lipoxygenase metabolites of arachidonic acid.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3k8i3go7sq0n2e9np2i8ncd2nv075tfl): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once