Publications by authors named "Hawkeye King"

The rapid adoption of robotic assisted surgery challenges the pace at which adequate robotic training can occur due to access limitations to the da Vinci robot. Thirty medical students completed a randomized controlled trial evaluating whether the Raven robot could be used as an alternative training tool for the Fundamentals of Laparoscopic Surgery (FLS) block transfer task on the da Vinci robot. Two groups, one trained on the da Vinci and one trained on the Raven, were tested on a criterion FLS block transfer task on the da Vinci.

View Article and Find Full Text PDF

The Raven-II is a platform for collaborative research on advances in surgical robotics. Seven universities have begun research using this platform. The Raven-II system has two 3-DOF spherical positioning mechanisms capable of attaching interchangeable four DOF instruments.

View Article and Find Full Text PDF

Despite the great diversity of teleoperator designs and applications, their underlying control systems have many similarities. These similarities can be exploited to enable inter-operability between heterogeneous systems. We have developed a network data specification, the Interoperable Telerobotics Protocol, that can be used for Internet based control of a wide range of teleoperators.

View Article and Find Full Text PDF

A teleoperated surgical robotic system allows surgical procedures to be conducted across long distances while utilizing wired and wireless communication with a wide spectrum of performance that may affect the outcome. An open architecture portable surgical robotic system (Raven) was developed for both open and minimally invasive surgery. The system has been the subject of an intensive telesurgical experimental protocol aimed at exploring the boundaries of the system and surgeon performance during a series of field experiments in extreme environments (desert and underwater) teleportation between US, Europe, and Japan as well as lab experiments under synthetic fixed time delay.

View Article and Find Full Text PDF

The Society of American Gastrointestinal Endoscopic Surgeons (SAGES) Fundamentals of Laparoscopic Surgery (FLS) program contains curriculum that includes both a cognitive and psychomotor skills. In this research the use of FLS Block Transfer task is used to evaluate the performance of surgeons' teleoperating the University of Washington Surgical robot. The use of the FLS Trainer Box and accessories kit provides a well-defined series of tasks that can be repeated by any researchers working in the field of surgical robotics so that systems can be evaluated using a common method.

View Article and Find Full Text PDF

Robotically assisted surgery stands to further revolutionize the medical field and provide patients with more effective healthcare. Most robotically assisted surgeries are teleoperated from the surgeon console to the patient where both ends of the system are located in the operating room. The challenge of surgical teleoperation across a long distance was already demonstrated through a wired communication network in 2001.

View Article and Find Full Text PDF

As the field of surgical robotics continues to evolve, it is important to keep patient safety in mind. This paper describes a safety control architecture aimed at moving an experimental system in the direction of intrinsically safe operation. The system includes safety features such as: a small number of states, Programmable Logic Controller (PLC) state transition control, active enable, brakes, E-STOP, and a surgeon foot pedal.

View Article and Find Full Text PDF