Various species of microalgae have recently emerged as promising host-organisms for use in biotechnology industries due to their unique properties. These include efficient conversion of sunlight into organic compounds, the ability to grow in extreme conditions and the occurrence of numerous post-translational modification pathways. However, the inability to obtain high levels of nuclear heterologous gene expression in microalgae hinders the development of the entire field.
View Article and Find Full Text PDFDespite the impressive progress made in recent years in understanding the early steps in charge separation within the photosynthetic reaction centers, our knowledge of how ferredoxin (Fd) interacts with the acceptor side of photosystem I (PSI) is not as well developed. Fd accepts electrons after transiently docking to a binding site on the acceptor side of PSI. However, the exact location, as well as the stoichiometry, of this binding have been a matter of debate for more than two decades.
View Article and Find Full Text PDFBackground: Hydrogen photo-production in green algae, catalyzed by the enzyme [FeFe]-hydrogenase (HydA), is considered a promising source of renewable clean energy. Yet, a significant increase in hydrogen production efficiency is necessary for industrial scale-up. We have previously shown that a major challenge to be resolved is the inferior competitiveness of HydA with NADPH production, catalyzed by ferredoxin-NADP(+)-reductase (FNR).
View Article and Find Full Text PDFPhotosynthetic hydrogen production in the microalga Chlamydomonas reinhardtii is catalyzed by two [FeFe]-hydrogenase isoforms, HydA1 and HydA2, both irreversibly inactivated upon a few seconds exposure to atmospheric oxygen. Until recently, it was thought that hydrogenase is not active in air-grown microalgal cells. In contrast, we show that the entire pool of cellular [FeFe]-hydrogenase remains active in air-grown cells due to efficient scavenging of oxygen.
View Article and Find Full Text PDFProline-rich proteins (PRP) are cell wall and plasma membrane-anchored factors involved in cell wall maintenance and its stress-induced fortification. Here we compare the synthesis of P5C as the proline (Pro) precursor in the cytosol and chloroplast by an introduced alien system and evaluate correlation between PRP synthesis and free Pro accumulation in plants. We developed a Pro over-producing system by generating transgenic tobacco plants overexpressing E.
View Article and Find Full Text PDFNepenthes spp. are carnivorous plants that have developed insect capturing traps, evolved by specific modification of the leaf tips, and are able to utilize insect degradation products as nutritional precursors. A chitin-induced antifungal ability, based on the production and secretion to the trap liquid of droserone and 5-O-methyldroserone, is described here.
View Article and Find Full Text PDFThe genus Nepenthes represents carnivorous plants with pitcher traps capable of efficient prey capture and digestion. The possible involvement of plant chitinases in this process was studied in Nepenthes khasiana. Two different types of endochitinases were identified in the liquid of closed traps exhibiting substrate specificity for either long chitin polymers or N-acetylglucosamine (GlcNAc) oligomers.
View Article and Find Full Text PDF