Publications by authors named "Hava Ben David"

Human gut commensals are increasingly suggested to impact non-communicable diseases, such as inflammatory bowel diseases (IBD), yet their targeted suppression remains a daunting unmet challenge. In four geographically distinct IBD cohorts (n = 537), we identify a clade of Klebsiella pneumoniae (Kp) strains, featuring a unique antibiotics resistance and mobilome signature, to be strongly associated with disease exacerbation and severity. Transfer of clinical IBD-associated Kp strains into colitis-prone, germ-free, and colonized mice enhances intestinal inflammation.

View Article and Find Full Text PDF

Aim: To study the role of Toll-like receptor (TLR) 2 in Familial Mediterranean fever (FMF) inflammatory process.

Methods: TLR2 expression on monocytes of FMF attack-free patients (n = 20) and the effect of sera of FMF patients with an acute attack (n = 9) on TLR2 expression on monocytes of healthy donors were studied by flow cytometry (FACS). TLR2 expression was also studied in THP-1 cells, and TLR2 downstream signaling was studied by ELISA for the secretion of IL-1β and pro-inflammatory cytokines or by western blotting to measure nuclear factor (NF)-κB.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is an autoimmune disease that involves dysregulation of B and T cells. A tolerogenic peptide, designated hCDR1, ameliorates disease manifestations in SLE-afflicted mice. In the present study, the effect of treatment with hCDR1 on the CD74/macrophage migration inhibitory factor (MIF) pathway was studied.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is an autoimmune disease mediated by T and B cells. It is characterized by a variety of autoantibodies and systemic clinical manifestations. A tolerogenic peptide, designated hCDR1, ameliorated the serological and clinical manifestations of SLE in both spontaneous and induced models of lupus.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by dysregulated immune responses mediated by T and B cells. A tolerogenic peptide, designated hCDR1, ameliorated the serological and clinical manifestations of SLE in mouse models of lupus. We investigated the role of B-cell activating factor (BAFF) in the beneficial effects of hCDR1.

View Article and Find Full Text PDF

Myasthenia gravis (MG) and experimental autoimmune MG are T cell-dependent antibody-mediated autoimmune diseases. A dual altered peptide ligand (APL), composed of the tandemly arranged two single amino acid analogs of two myasthenogenic peptides, p195-212 and p259-271, down-regulated in vitro and in vivo MG-associated T cell responses. In the present study, we investigated the role of CD8(+)CD28(-) regulatory cells in the mechanism of action of the dual APL.

View Article and Find Full Text PDF

Experimental systemic lupus erythematosus (SLE) can be induced in mice following immunization with an anti-DNA mAb expressing a major Id, 16/6Id. Treatment with a peptide, designated human CDR1 (hCDR1; Edratide), that is based on the sequence of CDR1 of the 16/6Id ameliorated disease manifestations. In the present study, we investigated the roles of apoptosis and related molecules in BALB/c mice with induced experimental SLE following treatment with hCDR1.

View Article and Find Full Text PDF

Myasthenia gravis (MG) and its animal model, experimental autoimmune MG (EAMG), are T cell-dependent antibody-mediated autoimmune diseases. A dual altered peptide ligand (APL) that is composed of the tandemly arranged two single amino acid analogues of two myasthenogenic peptides, p195-212 and p259-271, down-regulated in vitro and in vivo MG-associated autoreactive responses. The dual APL was shown to exert its beneficial effects by up-regulating ERK1,2 in CD4(+)CD25(+) regulatory cells.

View Article and Find Full Text PDF

Myasthenia gravis (MG) and experimental autoimmune MG (EAMG) are T cell-dependent, antibody-mediated autoimmune diseases. A dual altered peptide ligand (APL) that is composed of the tandemly arranged two single amino acid analogues of two myasthenogenic peptides, p195-212 and p259-271, was demonstrated to down-regulate in vitro and in vivo MG-associated autoreactive responses. The aims of this study were to investigate the possible role of Fas-FasL-mediated apoptosis in the down-regulatory mechanism of the dual APL.

View Article and Find Full Text PDF

The myasthenogenic peptides p195-212 and p259-271 are sequences of the human acetylcholine receptor and were shown to induce myasthenia gravis-associated immune responses in mice. A dual altered peptide ligand (APL) composed of the two APLs of the myasthenogenic peptides inhibited, in vitro and in vivo, those responses. The aims of this study were to elucidate the events that follow the in vivo treatment with the dual APL and to characterize the cell population that is induced by the latter.

View Article and Find Full Text PDF