In radiation tumor therapy, irradiation, on one hand, should cause cell death to the tumor. On the other hand, the surrounding non-tumor tissue should be maintained unaffected. Therefore, methods of local dose enhancements are highly interesting.
View Article and Find Full Text PDFPeritoneal dialysis (PD) is an increasingly needed, life-maintaining kidney replacement therapy; efficient solute transport is critical for patient outcome. While the role of peritoneal perfusion on solute transport in PD has been described, the role of cellular barriers is uncertain, the mesothelium has been considered irrelevant. We calculated peritoneal blood microvascular endothelial (BESA) to mesothelial surface area (MSA) ratio in human peritonea in health, chronic kidney disease, and on PD, and performed molecular transport related gene profiling and single molecule localization microscopy in two mesothelial (MC) and two endothelial cell lines (EC).
View Article and Find Full Text PDFBackground: It is widely accepted that the 3D chromatin organization in human cell nuclei is not random and recent investigations point towards an interactive relation of epigenetic functioning and chromatin (re-)organization. Although chromatin organization seems to be the result of self-organization of the entirety of all molecules available in the cell nucleus, a general question remains open as to what extent chromatin organization might additionally be predetermined by the DNA sequence and, if so, if there are characteristic differences that distinguish typical regions involved in dysfunction-related aberrations from normal ones, since typical DNA breakpoint regions involved in disease-related chromosome aberrations are not randomly distributed along the DNA sequence.
Methods: Highly conserved -mer patterns in intronic and intergenic regions have been reported in eukaryotic genomes.
Super-resolution microscopy has been used to show the formation of receptor clusters and adapted lipid organization of cell membranes for many members of the ErbB receptor family. The clustering behaviour depends on the receptor size and shape, possibly ligand binding or expression activity. Using single molecule localization microscopy (SMLM), we also showed this typical clustering for the epidermal growth factor receptor variant III (EGFRvIII) in glioblastoma multiforme (GBM) cells.
View Article and Find Full Text PDFThe Endocrine Society (ES) guidelines recommend screening for primary aldosteronism (PA) in high risk hypertensive patients presenting with at least one of seven criteria (resistant HTN, hypokalaemia, adrenal nodule, etc.) Although guidelines are clear and screening is simple, compliance rates among clinicians are extremely low. This results in underdiagnosis of early disease, leading to cadiovasculaer complications and the extra-burden of advanced chronic kidney disease.
View Article and Find Full Text PDFThis roadmap reviews the new, highly interdisciplinary research field studying the behavior of condensed matter systems exposed to radiation. The Review highlights several recent advances in the field and provides a roadmap for the development of the field over the next decade. Condensed matter systems exposed to radiation can be inorganic, organic, or biological, finite or infinite, composed of different molecular species or materials, exist in different phases, and operate under different thermodynamic conditions.
View Article and Find Full Text PDFThe specific characteristics of words (2 ≤ k ≤ 11) regarding genomic distribution and evolutionary conservation were recently found. Among them are, in high abundance, words with a tandem repeat structure (repeat unit length of 1 bp to 3 bp). Furthermore, there seems to be a class of extremely short tandem repeats (≤12 bp), so far overlooked, that are non-random-distributed and, therefore, may play a crucial role in the functioning of the genome.
View Article and Find Full Text PDFExposure to high acute doses of ionizing radiation (IR) can induce cutaneous radiation syndrome. Weeks after such radiation insults, keratinocyte nuclei of the epidermis exhibit persisting genomic lesions that present as focal accumulations of DNA double-strand break (DSB) damage marker proteins. Knowledge about the nanostructure of these genomic lesions is scarce.
View Article and Find Full Text PDFThe spatial organization of euchromatin (EC) and heterochromatin (HC) appears as a cell-type specific network, which seems to have an impact on gene regulation and cell fate. The spatial organization of cohesin should thus also be characteristic for a cell type since it is involved in a TAD (topologically associating domain) formation, and thus in gene regulation or DNA repair processes. Based on the previous hypotheses and results on the general importance of heterochromatin organization on genome functions in particular, the configurations of these organizational units (EC represented by H3K4me3-positive regions, HC represented by H3K9me3-positive regions, cohesins) are investigated in the cell nuclei of different cancer and non-cancerous cell types and under different anti-cancer treatments.
View Article and Find Full Text PDFDinucleotides are known as determinants for various structural and physiochemical properties of DNA and for binding affinities of proteins to DNA. These properties (e.g.
View Article and Find Full Text PDFThe cell as a system of many components, governed by the laws of physics and chemistry drives molecular functions having an impact on the spatial organization of these systems and vice versa. Since the relationship between structure and function is an almost universal rule not only in biology, appropriate methods are required to parameterize the relationship between the structure and function of biomolecules and their networks, the mechanisms of the processes in which they are involved, and the mechanisms of regulation of these processes. Single molecule localization microscopy (SMLM), which we focus on here, offers a significant advantage for the quantitative parametrization of molecular organization: it provides matrices of coordinates of fluorescently labeled biomolecules that can be directly subjected to advanced mathematical analytical procedures without the need for laborious and sometimes misleading image processing.
View Article and Find Full Text PDFComplex functioning of the genome in the cell nucleus is controlled at different levels: (a) the DNA base sequence containing all relevant inherited information; (b) epigenetic pathways consisting of protein interactions and feedback loops; (c) the genome architecture and organization activating or suppressing genetic interactions between different parts of the genome. Most research so far has shed light on the puzzle pieces at these levels. This article, however, attempts an integrative approach to genome expression regulation incorporating these different layers.
View Article and Find Full Text PDFA 76-year-old man was evaluated in our emergency department (ED) for right toe swelling and pain. His initial ED workup revealed volume overload, uncontrolled hypertension, slow atrial fibrillation, refractory hypokalemia, mixed metabolic alkalosis and respiratory acidosis, with a normal plasma pH, and hypernatremia. His medical chart revealed long standing hyperkalemia and metabolic acidosis, related to his diabetic kidney disease.
View Article and Find Full Text PDFSuper-resolution fluorescence microscopy has revolutionized multicolor imaging of nuclear structures due to the combination of high labeling specificity and high resolution. Here we expanded the recently developed fBALM (DNA structure fluctuation-assisted binding activated localization microscopy) method by developing a stable methodological sequence that enables dual-color imaging of high-resolution genomic DNA together with an immunofluorescently labeled intranuclear protein. Our measurements of the nuclear periphery, imaging DNA and LaminB1 in biologically relevant samples, show that this novel dual-color imaging method is feasible for further quantitative evaluations.
View Article and Find Full Text PDFThe cell nucleus is a complex biological system in which simultaneous reactions and functions take place to keep the cell as an individualized, specialized system running well. The cell nucleus contains chromatin packed in various degrees of density and separated in volumes of chromosome territories and subchromosomal domains. Between the chromatin, however, there is enough "free" space for floating RNA, proteins, enzymes, ATPs, ions, water molecules, etc.
View Article and Find Full Text PDFHyperthermia inhibits DNA double-strand break (DSB) repair that utilizes homologous recombination (HR) pathway by a poorly defined mechanism(s); however, the mechanisms for this inhibition remain unclear. Here we report that hyperthermia decreases H4K16 acetylation (H4K16ac), an epigenetic modification essential for genome stability and transcription. Heat-induced reduction in H4K16ac was detected in humans, , and yeast, indicating that this is a highly conserved response.
View Article and Find Full Text PDF: In oncology research, a long-standing discussion exists about pros and cons of metal nanoparticle-enhanced radiotherapy and real mechanisms behind the tumor cell response to irradiation (IR) in presence of gold nanoparticles (GNPs). A better understanding of this response is, however, necessary to develop more efficient and safety nanoparticle (NP) types designed to disturb specific processes in tumor cells. : We combined 3D confocal microscopy and super-resolution single molecule localization microscopy (SMLM) to analyze, at the multiscale, the early and late effects of 10 nm-GNPs on DNA double strand break (DSB) induction and repair in tumor cells exposed to different doses of photonic low-LET (linear energy transfer) radiation.
View Article and Find Full Text PDFDNA double-strand breaks (DSBs), known as the most severe damage in chromatin, were induced in breast cancer cells and normal skin fibroblasts by 2 Gy ionizing photon radiation. In response to DSB induction, phosphorylation of the histone variant H2AX to γH2AX was observed in the form of foci visualized by specific antibodies. By means of super-resolution single-molecule localization microscopy (SMLM), it has been recently shown in a first article about these data that these foci can be separated into clusters of about the same size (diameter ~400 nm).
View Article and Find Full Text PDFSeveral strongly conserved DNA sequence patterns in and between introns and intergenic regions (IIRs) consisting of short tandem repeats (STRs) with repeat lengths <3 bp have already been described in the kingdom of . In this work, we expanded the search and analysis of conserved DNA sequence patterns to a wider range of genomes. Our aims were to confirm the conservation of these patterns, to support the hypothesis on their functional constraints and/or the identification of unknown patterns.
View Article and Find Full Text PDFEndothelial and epithelial barrier function is crucial for the maintenance of physiological processes. The barrier paracellular permeability depends on the composition and spatial distribution of the cell-to-cell tight junctions (TJ). Here, we provide an experimental workflow that yields several layers of physiological data in the setting of a single endothelial cell monolayer.
View Article and Find Full Text PDFOpen systems can only exist by self-organization as pulsing structures exchanging matter and energy with the outer world. This review is an attempt to reveal the organizational principles of the heterochromatin supra-intra-chromosomal network in terms of nonlinear thermodynamics. The accessibility of the linear information of the genetic code is regulated by constitutive heterochromatin (CHR) creating the positional information in a system of coordinates.
View Article and Find Full Text PDFWith the development of the internet-of-things for applications such as wearables and packaging, a new class of electronics is emerging, characterized by the sheer number of forecast units and their short service-life. Projected to reach 27 billion units in 2021, connected devices are generating an exponentially increasing amount of electronic waste (e-waste). Fueled by the growing e-waste problem, the field of sustainable electronics is attracting significant interest.
View Article and Find Full Text PDFThis is a case study of a thirty-five year old woman with a past medical history of anxiety disorder and hypertension which has been elevated up to 180/100 mmHg during the previous year. She had no cardiovascular risk factors or family history of hypertension. Her high blood pressure was initially attributed to emotional stress, however, she was later referred for additional evaluation for secondary causes of hypertension.
View Article and Find Full Text PDFIn cancer therapy, the application of (fractionated) harsh radiation treatment is state of the art for many types of tumors. However, ionizing radiation is a "double-edged sword"-it can kill the tumor but can also promote the selection of radioresistant tumor cell clones or even initiate carcinogenesis in the normal irradiated tissue. Individualized radiotherapy would reduce these risks and boost the treatment, but its development requires a deep understanding of DNA damage and repair processes and the corresponding control mechanisms.
View Article and Find Full Text PDFWe report on a procedure for the preparation, printing and curing of antibacterial poly(N-isopropylacrylamide) nanocellulose-reinforced hydrogels. These composites present a highly anisotropic microstructure which allows to control and modulate the resulting mechanical properties. The incorporation of such nanoparticles enables us to modify both the strength and the humidity-dependent swelling direction of printed parts, offering a fourth-dimensional property to the resulting composite.
View Article and Find Full Text PDF