Dredged material dumping is an activity that causes some of the greatest changes in coastal waters. It results in the need to regularly monitor the properties of seawater related to water quality. In this study, we present the first wide-ranging attempt to correlate seawater turbidity and suspended particulate matter (SPM) concentrations within dumping sites and adjacent waters on the basis of in situ measurements.
View Article and Find Full Text PDFWe calculate the single-particle excitation spectrum and the Landau liquid parameters for the archetypal model of solids, the three-dimensional uniform electron gas, with the variational diagrammatic Monte Carlo method, which gives numerically controlled results without systematic error. In the metallic range of density, we establish benchmark values for the wave-function renormalization factor Z, the effective mass [Formula: see text], and the Landau parameters [Formula: see text] and [Formula: see text] with unprecedented accuracy, and we resolve the long-standing puzzle of non-monotonic dependence of mass on density. We also exclude the possibility that experimentally measured large reduction of bandwidth in Na metal can originate from the charge and spin fluctuations contained in the model of the uniform electron gas.
View Article and Find Full Text PDFRemote sensing techniques currently used to detect oil spills have not yet demonstrated their applicability to dispersed forms of oil. However, oil droplets dispersed in seawater are known to modify the local optical properties and, consequently, the upwelling light flux. Theoretically possible, passive remote detection of oil droplets was never tested in the offshore conditions.
View Article and Find Full Text PDFIn the contrary to surface oil slicks, dispersed oil pollution is not yet detected or monitored on regular basis. The possible range of changes of the local optical properties of seawater caused by the occurrence of dispersed oil, as well as the dependencies of changes on various physical and environmental factors, can be estimated using simulation techniques. Two models were combined to examine the influence of oceanic water type on the visibility of dispersed oil: the Monte Carlo radiative transfer model and the Lorenz-Mie model for spherical oil droplets suspended in seawater.
View Article and Find Full Text PDFPhys Rev Lett
December 2019
Proc Natl Acad Sci U S A
October 2019
We compute the thermal conductivity and electrical resistivity of solid hcp Fe to pressures and temperatures of Earth's core. We find significant contributions from electron-electron scattering, usually neglected at high temperatures in transition metals. Our calculations show a quasilinear relation between the electrical resistivity and temperature for hcp Fe at extreme high pressures.
View Article and Find Full Text PDFRecent observation of ∼10 times higher critical temperature in a FeSe monolayer compared with its bulk phase has drawn a great deal of attention because the electronic structure in the monolayer phase appears to be different than bulk FeSe. Using a combination of density functional theory and dynamical mean field theory, we find electronic correlations have important effects on the predicted atomic-scale geometry and the electronic structure of the monolayer FeSe on SrTiO_{3}. The electronic correlations are dominantly controlled by the Se-Fe-Se angle either in the bulk phase or the monolayer phase.
View Article and Find Full Text PDFThe metal-insulator transition (MIT) remains among the most thoroughly studied phenomena in solid state physics, but the complexity of the phenomena, which usually involves cooperation of many degrees of freedom including orbitals, fluctuating local moments, magnetism, and the crystal structure, have resisted predictive ab-initio treatment. Here we develop ab-initio theoretical method for correlated electron materials, based on Dynamical Mean Field Theory, which can predict the change of the crystal structure across the MIT at finite temperature. This allows us to study the coupling between electronic, magnetic and orbital degrees of freedom with the crystal structure across the MIT in rare-earth nickelates.
View Article and Find Full Text PDFWe study URu_{2-x}Fe_{x}Si_{2}, in which two types of staggered phases compete at low temperature as the iron concentration x is varied: the nonmagnetic "hidden order" (HO) phase below the critical concentration x_{c}, and unconventional antiferromagnetic (AFM) phase above x_{c}. By using polarization resolved Raman spectroscopy, we detect a collective mode of pseudovectorlike A_{2g} symmetry whose energy continuously evolves with increasing x; it monotonically decreases in the HO phase until it vanishes at x=x_{c}, and then reappears with increasing energy in the AFM phase. The mode's evolution provides direct evidence for a unified order parameter for both nonmagnetic and magnetic phases arising from the orbital degrees-of-freedom of the uranium-5f electrons.
View Article and Find Full Text PDFWe combined high field optical spectroscopy and first principles calculations to analyze the electronic structure of Ni_{3}TeO_{6} across the 53 K and 9 T magnetic transitions, both of which are accompanied by large changes in electric polarization. The color properties are sensitive to magnetic order due to field-induced changes in the crystal field environment, with those around Ni1 and Ni2 most affected. These findings advance the understanding of magnetoelectric coupling in materials in which magnetic 3d centers coexist with nonmagnetic heavy chalcogenide cations.
View Article and Find Full Text PDFWe present a theoretical investigation of the electronic structure of rutile (metallic) and M_{1} and M_{2} monoclinic (insulating) phases of VO_{2} employing a fully self-consistent combination of density functional theory and embedded dynamical mean field theory calculations. We describe the electronic structure of the metallic and both insulating phases of VO_{2}, and propose a distinct mechanism for the gap opening. We show that Mott physics plays an essential role in all phases of VO_{2}: undimerized vanadium atoms undergo classical Mott transition through local moment formation (in the M_{2} phase), while strong superexchange within V dimers adds significant dynamic intersite correlations, which remove the singularity of self-energy for dimerized V atoms.
View Article and Find Full Text PDF