Publications by authors named "Haukur Gunnarsson"

Amplification of 8p12-p11 is relatively common in breast cancer and several genes within the region have been suggested to affect breast tumor progression. The aim of the study was to map the amplified 8p12-p11 region in a large set of breast tumors in an effort to identify the genetic driver and to explore its impact on tumor progression and prognosis. Copy number alterations (CNAs) were mapped in 359 tumors, and gene expression data from 577 tumors (359 tumors included) were correlated with CNA, clinical-pathological factors, and protein expression (39 tumors).

View Article and Find Full Text PDF

Background: The minor allele of SNP rs3803662 has been shown to correlate with increased breast cancer risk and with lower expression of TOX3. The SNP is closely located to TOX3 residing within an uncharacterised gene LOC643714. The aim of the study was to examine the association of the risk allele with expression of TOX3 and LOC643714, and of mRNA levels and genotype with clinical and pathological characteristics.

View Article and Find Full Text PDF

Amplification of chromosomal region 11q13, containing the cell cycle regulatory gene CCND1, is frequently found in breast cancer and other malignancies. It is associated with the favourable oestrogen receptor (ER)-positive breast tumour phenotype, but also with poor prognosis and treatment failure. 11q13 spans almost 14 Mb and contains more than 200 genes and is affected by various patterns of copy number gains, suggesting complex mechanisms and selective pressure during tumour progression.

View Article and Find Full Text PDF

Introduction: A significant proportion of high-risk breast cancer families are not explained by mutations in known genes. Recent genome-wide searches (GWS) have not revealed any single major locus reminiscent of BRCA1 and BRCA2, indicating that still unidentified genes may explain relatively few families each or interact in a way obscure to linkage analyses. This has drawn attention to possible benefits of studying populations where genetic heterogeneity might be reduced.

View Article and Find Full Text PDF

Introduction: Breast cancer is a profoundly heterogeneous disease with respect to biologic and clinical behavior. Gene-expression profiling has been used to dissect this complexity and to stratify tumors into intrinsic gene-expression subtypes, associated with distinct biology, patient outcome, and genomic alterations. Additionally, breast tumors occurring in individuals with germline BRCA1 or BRCA2 mutations typically fall into distinct subtypes.

View Article and Find Full Text PDF

Introduction: HER2 gene amplification and protein overexpression (HER2+) define a clinically challenging subgroup of breast cancer with variable prognosis and response to therapy. Although gene expression profiling has identified an ERBB2 molecular subtype of breast cancer, it is clear that HER2+ tumors reside in all molecular subtypes and represent a genomically and biologically heterogeneous group, needed to be further characterized in large sample sets.

Methods: Genome-wide DNA copy number profiling, using bacterial artificial chromosome (BAC) array comparative genomic hybridization (aCGH), and global gene expression profiling were performed on 200 and 87 HER2+ tumors, respectively.

View Article and Find Full Text PDF

PURPOSE Human epidermal growth factor receptor 2 (HER2) gene amplification or protein overexpression (HER2 positivity) defines a clinically challenging subgroup of patients with breast cancer (BC) with variable prognosis and response to therapy. We aimed to investigate the heterogeneous biologic appearance and clinical behavior of HER2-positive tumors using molecular profiling. PATIENTS AND METHODS Hierarchical clustering of gene expression data from 58 HER2-amplified tumors of various stage, histologic grade, and estrogen receptor (ER) status was used to construct a HER2-derived prognostic predictor that was further evaluated in several large independent BC data sets.

View Article and Find Full Text PDF

Several mutations in the PALB2 gene (partner and localizer of BRCA2) have been associated with an increased risk of breast cancer, including a founder mutation, 1592delT, reported in Finnish breast cancer families. Although most often the risk is moderate, it doesn't exclude families with high-risk mutations to exist and such observations have been reported. To see if high-risk PALB2-mutations may be present in the geographically confined population of Iceland, linkage analysis was done on 111 individuals, thereof 61 breast cancer cases, from 9 high-risk non-BRCA1/BRCA2 breast cancer families, targeting the PALB2 region.

View Article and Find Full Text PDF