Lifestyle interventions with weight loss can improve insulin sensitivity in type 2 diabetes (T2D), but mechanisms are unclear. We explored circulating and skeletal muscle metabolite signatures of altered peripheral (pIS) and hepatic insulin sensitivity (hIS) in overweight and obese T2D individuals that were randomly assigned a 12-week Paleolithic-type diet with (diet-ex, = 13) or without (diet, = 13) supervised exercise. Baseline and post-intervention measures included: mass spectrometry-based metabolomics and lipidomics of skeletal muscle and plasma; pIS and hIS; ectopic lipid deposits in the liver and skeletal muscle; and skeletal muscle fat oxidation rate.
View Article and Find Full Text PDFThe role of ectopic fat, insulin secretion and clearance in the preservation ofβ-cell function in black African women with obesity who typically present with hyperinsulinaemia is not clear. We aim to examine the associations between disposition index (DI, an estimate of β-cell function), insulin secretion and clearance and ectopic fat deposition. This is a cross-sectional study of 43 black South African women (age 20-35 years) with obesity (BMI 30-40 kg/m2) and without type 2 diabetes that measured the following: DI, insulin sensitivity (SI), acute insulin response (AIRg), insulin secretion rate (ISR), hepatic insulin extraction and peripheral insulin clearance (frequently sampled i.
View Article and Find Full Text PDFAims/hypothesis: We sought to determine putative relationships among improved mitochondrial respiration, insulin sensitivity and altered skeletal muscle lipids and metabolite signature in response to combined aerobic and resistance training in women with obesity.
Methods: This study reports a secondary analysis of a randomised controlled trial including additional measures of mitochondrial respiration, skeletal muscle lipidomics, metabolomics and protein content. Women with obesity were randomised into 12 weeks of combined aerobic and resistance exercise training (n = 20) or control (n = 15) groups.
Objective: We investigated the effects of a 12-week exercise intervention on insulin sensitivity (SI) and hyperinsulinemia and associated changes in regional and ectopic fat.
Research Design And Methods: Healthy, black South African women with obesity (mean age 23 ± 3.5 years) and of isiXhosa ancestry were randomised into a 12-week aerobic and resistance exercise training group (n = 23) and a no exercise group (control, n = 22).
We assessed differences in mitochondrial function in gluteal (gSAT) and abdominal subcutaneous adipose tissue (aSAT) at baseline and in response to 12-weeks of exercise training; and examined depot-specific associations with body fat distribution and insulin sensitivity (S). Obese, black South African women (n = 45) were randomized into exercise (n = 23) or control (n = 22) groups. Exercise group completed 12-weeks of aerobic and resistance training (n = 20), while the control group (n = 15) continued usual behaviours.
View Article and Find Full Text PDFBackground The accumulation of myocardial triglycerides and remodeling of the left ventricle are common features in type 2 diabetes mellitus and represent potential risk factors for the development of diastolic and systolic dysfunction. A few studies have investigated the separate effects of diet and exercise training on cardiac function, but none have investigated myocardial changes in response to a combined diet and exercise intervention. This 12-week randomized study assessed the effects of a Paleolithic diet, with and without additional supervised exercise training, on cardiac fat, structure, and function.
View Article and Find Full Text PDFAims/hypothesis: The aim of the study was to investigate ectopic fat deposition and insulin sensitivity, in a parallel single-blinded randomised controlled trial, comparing Paleolithic diet alone with the combination of Paleolithic diet and exercise in individuals with type 2 diabetes.
Methods: Thirty-two individuals with type 2 diabetes with BMI 25-40 kg/m and 30-70 years of age followed a Paleolithic diet ad libitum for 12 weeks. In addition, study participants were randomised by computer program to either supervised combined exercise training (PD-EX group) or standard care exercise recommendations (PD group).
Background: The pathogenesis of type 2 diabetes (T2D) in black African women is complex and differs from that in their white counterparts. However, earlier studies have been cross-sectional and provide little insight into the causal pathways. Exercise training is consistently used as a model to examine the mechanisms underlying insulin resistance and risk for T2D.
View Article and Find Full Text PDFBackground: Accumulation of myocardial triglycerides (MTG) is associated with impaired left ventricular (LV) remodelling and function in obese and diabetic subjects. The role of MTG accumulation in development of heart failure in this group of patients is unknown. Short-term studies suggest that diets that lead to weight loss could mobilize MTG, with a favourable effect on cardiac remodelling.
View Article and Find Full Text PDFBackground/objectives: Our objective was to investigate changes in liver fat and insulin sensitivity during a 2-year diet intervention. An ad libitum Paleolithic diet (PD) was compared with a conventional low-fat diet (LFD).
Subjects/methods: Seventy healthy, obese, postmenopausal women were randomized to either a PD or a conventional LFD.
Aims/hypothesis: There is evidence to suggest that ectopic fat deposition in liver and skeletal muscle may differ between black and white women resulting in organ-specific differences in insulin sensitivity. Accordingly, the aim of the study was to examine ethnic differences in hepatic and peripheral insulin sensitivity, and the association with hepatic and skeletal muscle lipid content, and skeletal muscle gene expression.
Methods: In a cross-sectional study including 30 obese premenopausal black and white women, body composition (dual energy x-ray absorptiometry), liver fat and skeletal muscle (soleus and tibialis anterior) fat accumulation (proton-magnetic resonance spectroscopy), skeletal muscle gene expression, insulin sensitivity (two-step isotope labelled, hyperinsulinaemic-euglycaemic clamp with 10 mU m(-2) min(-1) and 40 mU m(-2) min(-1) insulin infusions), and serum adipokines were measured.
Purpose: Survival for high-grade gliomas is poor, at least partly explained by intratumoral heterogeneity contributing to treatment resistance. Radiological evaluation of treatment response is in most cases limited to assessment of tumor size months after the initiation of therapy. Diffusion-weighted magnetic resonance imaging (MRI) and its estimate of the apparent diffusion coefficient (ADC) has been widely investigated, as it reflects tumor cellularity and proliferation.
View Article and Find Full Text PDFObjectives: Ectopic fat accumulation in liver and skeletal muscle may be an essential link between abdominal obesity, insulin resistance and increased risk of cardiovascular disease after menopause. We hypothesized that a diet containing a relatively high content of protein and unsaturated fat [mainly monounsaturated fatty acids (MUFAs)] but limited carbohydrates and saturated fat would reduce lipid content in liver and muscle and increase insulin sensitivity in postmenopausal women.
Subjects: Ten healthy, nonsmoking postmenopausal women with a body mass index (BMI) >27 (28-35) kg m(-2) were included in the study.
Purpose: To study measurement repeatability and physiological determinants on measurement stability for phase contrast MRI (PC-MRI) measurements of cyclic volume changes (ΔV) of brain arteries, veins, and cerebrospinal fluid (CSF) compartments.
Materials And Methods: Total cerebral blood flow (tCBF), total internal jugular flow (tJBF) and spinal CSF flow at C2-C3 level and CSF in the aqueduct was measured using five repetitions in 20 healthy subjects. After subtracting net flow, waveforms were integrated to calculate ΔV of arterial, venous, and cerebrospinal fluid compartments.
Object: Polyunsaturated omega-6 fatty acids (PUFAs) have been shown to promote prostate cancer. Here, we describe the use of HRMAS NMR spectroscopy to detect omega-6 PUFA species in prostate tissues.
Materials And Methods: Samples originating from non-malignant (n = 54) and malignant (n = 27) prostate tissues (from 27 prostatectomized men) were studied by 1D (1)H, 2D (1)H-(1)H and (1)H-(13)C HRMAS NMR spectroscopy followed by histopathological characterization.
The gradient fields in magnetic resonance imaging (MRI) will in some circumstances exceed the ICNIRP guidelines of occupational electromagnetic field exposure when personnel are near the scanner during MRI scanning. In this work we have shown that using commercially available modified sequences for noise reduction purposes, exposure will decrease by a factor of 1.5 with preserved image quality.
View Article and Find Full Text PDFObjective: This study uses proton magnetic resonance spectroscopy to investigate whether or not idiopathic normal pressure hydrocephalus is associated with neuronal dysfunction or ischemia in the brain. We evaluate whether or not proton magnetic resonance spectroscopy is useful for predicting improvement after long-term external lumbar drainage (ELD) of cerebrospinal fluid.
Methods: Eighteen patients (mean age, 73 yr; six women) and 10 matching controls participated.
The 1H and 13C chemical shifts for the heme methyls of low-spin, ferric sperm whale cyanometmyoglobin reconstituted with a variety of centrosymmetric and pseudocentrosymmetric hemins have been recorded and analyzed to shed light on the nature of heme-protein contacts, other than that of the axial His, that modulate the rhombic perturbation to the heme's in-plane electronic asymmetry. The very similar 1H dipolar shifts for heme pocket residues in all complexes yield essentially the same magnetic axes as in wild type, and the resultant dipolar shifts allow the direct determination of the heme methyl proton and 13C contact shifts in all complexes. It is demonstrated that, even when the magnetic axes and anisotropies are known, the intrinsic uncertainties in the orientational parameters lead to a sufficiently large uncertainty in dipolar shift that the methyl proton contact shifts are inherently significantly less reliable indicators of the unpaired electron spin distribution than the methyl 13C contact shifts.
View Article and Find Full Text PDFCold-adaptation of enzymes involves improvements in catalytic efficiency. This paper describes studies on the conformational stability of a cold-active alkaline phosphatase (AP) from Atlantic cod, with the aim of understanding more clearly its structural stability in terms of subunit dissociation and unfolding of monomers. AP is a homodimeric enzyme that is only active in the dimeric state.
View Article and Find Full Text PDFPsychrophilic organisms have successfully adapted to various low-temperature environments such as cold ocean waters. Catalysts with increased catalytic efficiencies are produced, generally at the expense of thermal stability due to fewer non-covalent stabilizing interactions. A marine bacterial strain producing a particularly heat-labile alkaline phosphatase was selected from a total of 232 strains isolated from North-Atlantic coastal waters.
View Article and Find Full Text PDFThe chemical structure of a phosphoglucolipid from the membrane of the bacterium Acholeplasma laidlawii strain B-PG9 has been determined by high resolution NMR to be 1,2-diacyl-3-O-[glycerophosphoryl-6-O-(alpha-D-glucopyranosyl-(1 -->2)-O-alpha-D-glucopyranosyl)]-sn-glycerol (GPDGlcDAG). It was concluded that this lipid has exactly the same structure as one of the phosphoglucolipids from A. laidlawii strain A-EF22.
View Article and Find Full Text PDFTwo 28-residue peptides, PTLLTLFRVILIPFFVLVFYKKKGKKKG [Pgs-(6-25)-peptidyl-KKKGKKKG; Pgs peptide A] and VEYAGIALFFVAAVLTLWSMLQYLSAAR [Pgs-(149-176)-peptide, Pgs peptide E], were synthesized and studied by CD and two-dimensional 1H-NMR spectroscopy. The first 20 amino acid residues of Pgs peptide A are identical to one predicted transmembrane segment (Pro6-Tyr25) of the integral membrane protein phosphatidylglycerophosphate synthase (Pgs) of Escherichia coli. Pgs peptide E is identical to another predicted transmembrane segment (Val149-Arg176), which is located in the C-terminal end of this lipid synthase.
View Article and Find Full Text PDFDigalactosyldiacylglycerol (DGalDAG) is one of the major lipids in the cells of higher plants. DGalDAG forms a lamellar liquid crystalline phase together with water. Lipid aggregates can thus be prepared which are of potential interest for use within the cosmetic and pharmaceutical industries.
View Article and Find Full Text PDFThe structures of three glucolipids from the membrane of Acholeplasma laidlawii, strain A-EF22, were determined by high resolution 1H-NMR and 13C-NMR spectroscopy. The two most abundant glucolipids in this organism were shown to be 1,2-diacyl-3-O-(alpha-D-glucopyranosyl)-sn-glycerol (MGlcDAG) and 1,2-diacyl-3-O-[alpha-D-glucopyranosyl-(1 --> 2)-O-alpha-D- glucopyranosyl]-sn-glycerol (DGlcDAG). These structures agree with those determined previously by chemical analyses of the two most abundant glucolipids synthesized by the B strain of A.
View Article and Find Full Text PDFThe structure of one glucolipid from the membrane of Acholeplasma laidlawii, strain A-EF22, was determined. This glucolipid is synthesized only when a large fraction of saturated, straight-chain fatty acids are incorporated into the membrane lipids of strain A-EF22. The lipid was studied by 1H- and 13C-NMR spectroscopy.
View Article and Find Full Text PDF