Complex and networked dynamical systems characterize the time evolution of most of the natural and human-made world. The dimension of their state space, i.e.
View Article and Find Full Text PDFRenewable generators perturb the electric power grid with heavily non-Gaussian and time correlated fluctuations. While changes in generated power on timescales of minutes and hours are compensated by frequency control measures, we report subsecond distribution grid frequency measurements with local non-Gaussian fluctuations which depend on the magnitude of wind power generation in the grid. Motivated by such experimental findings, we simulate the subsecond grid frequency dynamics by perturbing the power grid, as modeled by a network of phase coupled nonlinear oscillators, with synthetically generated wind power feed-in time series.
View Article and Find Full Text PDFThe number of units of a network dynamical system, its size, arguably constitutes its most fundamental property. Many units of a network, however, are typically experimentally inaccessible such that the network size is often unknown. Here we introduce a detection matrix that suitably arranges multiple transient time series from the subset of accessible units to detect network size via matching rank constraints.
View Article and Find Full Text PDF