Publications by authors named "Hau-Ming Chang"

For the first time, a hyper-thermophilic aerobic (>60 °C) bioreactor has been integrated with direct submerged membrane distillation (MD), highlighting its potential as an advanced wastewater treatment solution. The hyper-thermophilic aerobic bioreactor, operating up to 65 °C, is tailored for high organic removal, while MD efficiently produces clean water. Throughout the study, high removal rates of 99.

View Article and Find Full Text PDF

Mathematical modeling can be helpful to understand and optimize osmotic membrane bioreactors (OMBR), a promising technology for sustainable wastewater treatment with simultaneous water recovery. Herein, seven machine learning (ML) algorithms were employed to model both water flux and salinity of a lab-scale OMBR. Through the optimum hyperparameters tuning and 5-fold cross-validation, the ML models have achieved more accurate results without obvious overfitting and bias.

View Article and Find Full Text PDF

Tetramethylammonium hydroxide (TMAH) is a toxic photoresist developer used in the photolithography process in thin-film transistor liquid crystal display (TFT-LCD) production, and it can be removed through anaerobic treatment. TMAH cannot be released into the environment because of its higher toxicity. A tight membrane, such as a forward osmosis (FO) membrane, together with an anaerobic biological process can ensure that no TMAH is released into the environment.

View Article and Find Full Text PDF

Triiodide, a larger charged molecule compared to iodide, is thermodynamically favored with the presence of both iodide and iodine, and is easier to be retained by membrane processes. For the first time, iodide was recovered in the form of triiodide by forward osmosis (FO) for thin-film transistor liquid crystal display industries by preoxidation of iodide to triiodide. Partial oxidation by NaOCl was used to convert the iodide to iodine and then to form triiodide.

View Article and Find Full Text PDF

Membrane distillation (MD) has a high heat requirement. Integrating MD with thermophilic bioreactors could remedy this problem. A laboratory-scale thermophilic anaerobic granular sludge membrane distillation bioreactor (ThAGS-MDBR) was used to treat wastewater with a high organic loading rate (OLR).

View Article and Find Full Text PDF

Progressive freezing is a solvent purification technology with low energy requirements and high concentration efficiency. Although these advantages make it a promising technology, the technique has never been explored for draw solution recovery for forward osmosis (FO). Hence, in this study, the progressive freezing process was used to concentrate three common diluted draw solutions: NaCl, MgCl, and EDTA-2Na with different ice front speeds, stirring rates, and initial draw solution concentrations.

View Article and Find Full Text PDF

A novel upflow anaerobic sludge-forward osmotic membrane bioreactor was developed for simultaneous wastewater treatment, membrane fouling reduction, and nutrient recovery. An upflow anaerobic sludge blanket (UASB) reactor was incorporated into the system, suspending the anaerobic sludge at the bottom of the reactor. A forward osmosis membrane replaced the traditional three-phase separator of the UASB technology.

View Article and Find Full Text PDF

Superhydrophobic membranes are essential for improved seawater desalination. This study presents the successful casting of a three-layered membrane composed of a top superhydrophobic coating onto a polypropylene (PP) mat through simple sol-gel processing of octadecyltrimethoxysilane (OTMS), and the bottom layer was casted with hydrophilic poly(vinyl alcohol) (PVA) by using a knife casting technique; this membrane represents a novel class of improved-performance membranes consisting of a top superhydrophobic coating onto a hydrophobic PP mat and a hydrophilic layer (PVA) at the bottom. OTMSs are well known low-surface-energy materials that enhance superhydrophobicity, and they were observed to be the ideal chemical group for increasing the hydrophobicity of the PP mat.

View Article and Find Full Text PDF

Superhydrophobic membranes are necessary for effective membrane-based seawater desalination. This paper presents the successful fabrication of a novel electrospun nanofibrous membrane composed of polysulfone and Cera flava, which represents a novel class of enhanced performance membranes consisting of a superhydrophobic nanofibrous layer and hydrophobic polypropylene (PP). Cera flava, which helps lower the surface energy, was found to be the ideal additive for increasing the hydrophobicity of the polysulfone (PSF) polymeric solution because of its components such as long-chain hydrocarbons, free acids, esters, and internal chain methylene carbons.

View Article and Find Full Text PDF

An investigation of micelle properties on the recovery of chromium for micellar enhanced ultrafiltration (MEUF) process was conducted using cationic surfactant of cetyltrimethylammonium bromide (CTAB). The relationship between degree of ionization, micellar sizes and chromium removal were determined in this study. The results showed that the complete ionization for CTA+ and Br- was observed for CTAB lower than 0.

View Article and Find Full Text PDF