Background: Substance use induces large economic and societal costs in the U.S. Understanding the change in substance use behaviors of persons who use drugs (PWUDs) over time, therefore, is important in order to inform healthcare providers, policymakers, and other stakeholders toward more efficient allocation of limited resources to at-risk PWUDs.
View Article and Find Full Text PDFAs a true 1D system, group-VIA tellurium (Te) is composed of van der Waals bonded molecular chains within a triangular crystal lattice. This unique crystal structure endows Te with many intriguing properties, including electronic, optoelectronic, thermoelectric, piezoelectric, chirality, and topological properties. In addition, the bandgap of Te exhibits thickness dependence, ranging from 0.
View Article and Find Full Text PDFIn this era of artificial intelligence and Internet of Things, emerging new computing paradigms such as in-sensor and in-memory computing call for both structurally simple and multifunctional memory devices. Although emerging two-dimensional (2D) memory devices provide promising solutions, the most reported devices either suffer from single functionalities or structural complexity. Here, this work reports a reconfigurable memory device (RMD) based on MoS/CuInPS heterostructure, which integrates the defect engineering-enabled interlayer defects and the ferroelectric polarization in CuInPS, to realize a simplified structure device for all-in-one sensing, memory and computing.
View Article and Find Full Text PDFTwo-dimensional (2D) tellurium (Te) is emerging as a promising p-type candidate for constructing complementary metal-oxide-semiconductor (CMOS) architectures. However, its small bandgap leads to a high leakage current and a low on/off current ratio. Although alloying Te with selenium (Se) can tune its bandgap, thermally evaporated SeTe thin films often suffer from grain boundaries and high-density defects.
View Article and Find Full Text PDFJ Cosmet Dermatol
August 2024
Background: While treatment is a definitive therapeutic component in the management of inflammatory skin conditions, adjunctive skin care comprising of appropriate cleansing, moisturization, and photoprotection are just as important. Cleansing, treatment, moisturization, and photoprotection (CTMP) constitute the four major components of holistic skincare routine for dermatological conditions. However, inadequate patient understanding of the condition, limited resources for physicians, and insufficient time for patient education during busy dermatological consultations are the main obstacles to establishing a holistic skincare routine in the real world.
View Article and Find Full Text PDFAlthough the crystal phase of two-dimensional (2D) transition metal dichalcogenides (TMDs) has been proven to play an essential role in fabricating high-performance electronic devices in the past decade, its effect on the performance of 2D material-based flash memory devices still remains unclear. Here, we report the exploration of the effect of MoTe in different phases as the charge-trapping layer on the performance of 2D van der Waals (vdW) heterostructure-based flash memory devices, where a metallic 1T'-MoTe or semiconducting 2H-MoTe nanoflake is used as the floating gate. By conducting comprehensive measurements on the two kinds of vdW heterostructure-based devices, the memory device based on MoS/h-BN/1T'-MoTe presents much better performance, including a larger memory window, faster switching speed (100 ns), and higher extinction ratio (10), than that of the device based on the MoS/h-BN/2H-MoTe heterostructure.
View Article and Find Full Text PDF1,3-Dienes are common scaffolds in biologically active natural products as well as building blocks for chemical synthesis. Developing efficient methods for the synthesis of diverse 1,3-dienes from simple starting materials is therefore highly desirable. Herein, we report a Pd(II)-catalyzed sequential dehydrogenation reaction of free aliphatic acids via β-methylene C-H activation, which enables one-step synthesis of diverse -1,3-dienes.
View Article and Find Full Text PDFThe arapaima () is one of the largest freshwater fish species, known to exceed 3 m in total length. It is listed as Data Deficient by the IUCN. is native to the Amazon River basin where they are an important food source.
View Article and Find Full Text PDFPd(II)-catalyzed nondirected C-H functionalization of heteroarenes is a significant challenge for the following reasons: poor reactivity of electron-deficient heterocycles and the unproductive coordination of Lewis basic nitrogen atoms. Existing methodologies using palladium catalysis often employ a large excess of heterocycle substrates to overcome these hurdles. Despite recent advances in nondirected functionalization of arenes that allow them to be used as limiting reagents, the reaction conditions are incompatible with electron-deficient heteroarenes.
View Article and Find Full Text PDFIn recent years, integrated lithium niobate (LN) chips have been widely used for developing a variety of photonic devices, such as high-speed electro-optical (EO) modulators and frequency comb generators. A major challenge for their practical applications is the high coupling loss between micrometer-scale LN waveguides and optical fibers. Lensed fibers and special taper structures are commonly used to tackle the coupling issue.
View Article and Find Full Text PDFBackground: As the clinical outcome of bite-associated infection is related to the oral commensals, evaluating their composition and antibiotic susceptibility pattern can provide more information for the antibiotic treatment of wound infections and increase the awareness of the multidrug-resistant bacteria in cat oral flora.
Aims: This study was conducted to identify the various bacterial species in the oral cavity of cats. It aimed to identify the composition of cat oral flora and antibiotic resistant bacterial stains.
Background: Treatment, cleansing, moisturizing, and photoprotection are four major components of holistic skin care for dermatological conditions. While treatment (T) is recognized as a key component in the management of dermatological conditions, there is a lack of practical guidance on the adjunctive role of cleansing, moisturizing, and photoprotection ("CMP"). Limited patient knowledge, confusion over product selection, and lack of guidance on how to choose and use CMP skin care products (in conjunction with pharmacological therapy) are the main barriers to establishing a holistic skin care routine for dermatological conditions.
View Article and Find Full Text PDFCatalyst-controlled site-selective activation of β- and γ-methylene carbon-hydrogen (C-H) bonds of free carboxylic acids is a long-standing challenge. Here we show that, with a pair of palladium catalysts assembled with quinoline-pyridone ligands of different chelate ring sizes, it is possible to perform highly site-selective monolactonization reactions with a wide range of dicarboxylic acids, generating structurally diverse and synthetically useful γ- and δ-lactones via site-selective β- or γ-methylene C-H activation. The remaining carboxyl group serves as a versatile linchpin for further synthetic applications, as demonstrated by the total synthesis of two natural products, myrotheciumone A and pedicellosine, from abundant dicarboxylic acids.
View Article and Find Full Text PDFEnolate alkylation and conjugate addition into an α,β-unsaturated system have served as long-standing strategic disconnections for the installation of α- or β-substituents on carbonyl-containing compounds. At the onset of our efforts to develop C-H activation reactions for organic synthesis, we set our eye toward developing asymmetric β-C-H activation reactions of aliphatic acids with the perspective that this bond-forming event could serve as a more flexible retrosynthetic surrogate for both canonical carbonyl-related asymmetric transformations.In this Account, we describe our early efforts using strongly coordinating chiral oxazolines to probe reaction mechanism and the stereochemical nature of the C-H cleavage transition state.
View Article and Find Full Text PDFThe coupling loss between optical devices is a critical factor affecting the performance of optical interconnect. This paper quantitatively studies the effectiveness of using a dye-doped-epoxy-based self-written waveguide (SWW) to reduce the coupling loss in optical interconnect caused by large mode-field mismatch and lateral offset. We formed SWW between single-mode fiber (SMF) with different mode-field diameters (MFD) and a 5 × 2 µm rectangular channel waveguide-under-test (WUT).
View Article and Find Full Text PDFAlzheimer's disease (AD) is a progressive debilitating neurodegenerative disease and the most common form of dementia in the older population. At present, there is no definitive effective treatment for AD. Therefore, researchers are now looking at stem cell therapy as a possible treatment for AD, but whether stem cells are safe and effective in humans is still not clear.
View Article and Find Full Text PDFLaurefurenynes C-F are four natural products isolated from species whose structures were originally determined on the basis of extensive nuclear magnetic resonance experiments. On the basis of a proposed biogenesis, involving a tricyclic oxonium ion as a key intermediate, we have reassigned the structures of these four natural products and synthesized the four reassigned structures using a biomimetic approach demonstrating that they are the actual structures of the natural products. In addition, we have developed a synthesis of the enantiomers of the natural products laurencin and deacetyllaurencin from the enantiomer of ()-laurefucin using an unusual retrobiomimetic strategy.
View Article and Find Full Text PDFWe present a simple concept to implement a magnetic sensor that uses evanescent scattering by a suspended magnetorheological (MR) film above a planar waveguide. The soft MR film embedded with ferromagnetic particles is to induce scattering on the evanescent field of a planar waveguide at a proximity distance. This distance can be controlled precisely by a magnetic field.
View Article and Find Full Text PDFWe propose a novel design architecture to realize scalable selective mode filter based on the asymmetric directional coupler structure. In this structure, any arbitrary high-order mode can pass, whereas other unwanted modes are blocked. Furthermore, multiple optical modes can be blocked by only adjusting the structural parameters.
View Article and Find Full Text PDFIn this study, we investigate the dynamic performance of a previously reported evanescent-scattering platform for submicron vibration sensing with low distortions. The platform consists of self-assembled ferromagnetic cantilevers located above a liquid-cladded optical waveguide. Theoretical analyses show enhancement of sensitivity and dynamic sensing range by reducing the waveguide core-cladding index difference.
View Article and Find Full Text PDFWe propose an optical sensing platform that uses evanescent scattering through precise manipulation of self-assembled ferromagnetic particle columns. The movement of the column tips can be controlled dynamically down to a submicron range by an external actuation, namely, a magnetic field, for interacting with evanescent wave propagation along an optical waveguide that causes a change in its output intensity for optical sensing. To demonstrate the idea, an AC current sensor with only a 5 mm interaction length is proposed and realized.
View Article and Find Full Text PDFObjective: Helicobacter pylori infection is common among Asians. However, evidence in the recent years has demonstrated a decrease in the prevalence of H. pylori infection among children and adults worldwide.
View Article and Find Full Text PDFWe report a unique concept to implement a high-order mode pass filter using mode converters. Our proposed design method implements a high-order mode pass filter of any order, uses different mode converters available, and applies to a variety of planar lightwave circuit material platforms. We fabricate a broadband fundamental mode filter device using a Mach-Zehnder interferometer and Y-junctions to demonstrate our idea.
View Article and Find Full Text PDFWe present an approach for the efficient design of polarization insensitive polymeric optical waveguide devices considering stress-induced effects. In this approach, the stresses induced in the waveguide during the fabrication process are estimated first using a more realistic model in the finite element analysis. Then we determine the perturbations in the material refractive indices caused by the stress-optic effect.
View Article and Find Full Text PDFA reconfigurable two-mode mux/demux device in planar waveguide was proposed. The simulated mux/demux extinction ratio was ≥ 35 dB with ≤ 0.4 dB excess loss.
View Article and Find Full Text PDF