Publications by authors named "Hatzfeld M"

The Hippo signaling pathway is an important regulator of organ growth and differentiation, and its deregulation contributes to the development of cancer. The activity of its downstream targets YAP/TAZ depends on adherens junctions. Plakophilin 4 (PKP4) is a cell-type specific adherens junction protein expressed in the proliferating cells of the epidermis.

View Article and Find Full Text PDF

Plakophilin 4 (PKP4) is a component of cell-cell junctions that regulates intercellular adhesion and Rho-signaling during cytokinesis with an unknown function during epidermal differentiation. Here we show that keratinocytes lacking PKP4 fail to develop a cortical actin ring, preventing adherens junction maturation and generation of tissue tension. Instead, PKP4-depleted cells display increased stress fibers.

View Article and Find Full Text PDF

Plakophilin 3 (PKP3) is a component of desmosomes and is frequently overexpressed in cancer. Using keratinocytes either lacking or overexpressing PKP3, we identify a signaling axis from ERK to the retinoblastoma (RB) protein and the E2F1 transcription factor that is controlled by PKP3. RB and E2F1 are key components controlling G1/S transition in the cell cycle.

View Article and Find Full Text PDF

Single gene disorders are ideally suited to establish robust genotype‒phenotype correlations and provide excellent opportunities to understand molecular pathomechanisms with relevance to complex disorders. The observation that patients diagnosed with the same causative mutation can present with phenotypic disease variability illustrates the significant role of disease modifiers and warns against oversimplification. In a new article in the Journal of Investigative Dermatology, Zimmer et al.

View Article and Find Full Text PDF

Desmosomes are intercellular junctions, which preserve tissue integrity during homeostatic and stress conditions. These functions rely on their unique structural properties, which enable them to respond to context-dependent signals and transmit them to change cell behavior. Desmosome composition and size vary depending on tissue specific expression and differentiation state.

View Article and Find Full Text PDF

Background: Cancer metastases are the main cause of lethality. The five-year survival rate for patients diagnosed with advanced stage oral cancer is 30%. Hence, the identification of novel therapeutic targets is an urgent need.

View Article and Find Full Text PDF

Desmosome remodeling is crucial for epidermal regeneration, differentiation and wound healing. It is mediated by adapting the composition, and by post-translational modifications, of constituent proteins. We have previously demonstrated in mouse suprabasal keratinocytes that plakophilin (PKP) 1 mediates strong adhesion, which is negatively regulated by insulin-like growth factor 1 (IGF1) signaling.

View Article and Find Full Text PDF

Hemidesmosomes and focal adhesions attach keratinocytes to the dermis and act as bidirectional signaling centers to control epidermal renewal. Pora and colleagues (Pora et al., 2019) demonstrate that in migrating primary human keratinocytes, hemidesmosomes cluster as ordered arrays consisting of multiple chevrons, flanked by actin-associated focal adhesions.

View Article and Find Full Text PDF

Plakophilins (Pkp) are desmosomal plaque proteins crucial for desmosomal adhesion and participate in the regulation of desmosomal turnover and signaling. However, direct evidence that Pkps regulate clustering and molecular binding properties of desmosomal cadherins is missing. Here, keratinocytes lacking either Pkp1 or 3 in comparison to wild type (wt) keratinocytes were characterized with regard to their desmoglein (Dsg) 1- and 3-binding properties and their capability to induce Dsg3 clustering.

View Article and Find Full Text PDF

The mature mammalian myocardium contains composite junctions (areae compositae) that comprise proteins of adherens junctions as well as desmosomes. Mutations or deficiency of many of these proteins are linked to heart failure and/or arrhythmogenic cardiomyopathy in patients. We firstly wanted to address the question whether the expression of these proteins shows an age-dependent alteration in the atrium of the human heart.

View Article and Find Full Text PDF

Desmosomes are essential for strong intercellular adhesion and are abundant in tissues exposed to mechanical strain. At the same time, desmosomes need to be dynamic to allow for remodeling of epithelia during differentiation or wound healing. Phosphorylation of desmosomal plaque proteins appears to be essential for desmosome dynamics.

View Article and Find Full Text PDF

Cell cycle progression is tightly regulated by cyclin-dependent kinases (CDKs). The ankyrin-repeat protein p19 functions as a key regulator of G1/S transition; however, its molecular mode of action is unknown. Here, we combine cell and structural biology methods to unravel the mechanism by which p19 controls cell cycle progression.

View Article and Find Full Text PDF

We here report a novel function of the armadillo protein p0071 (also known as PKP4) during transport mediated by the KIF3 transport complex. Secretion of chromogranin A and matrix metallopeptidase 9 from pancreatic neuroendocrine tumor cells or pancreatic cancer cells, respectively, was substantially reduced following knockdown of p0071. Vesicle tracking indicated that there was impaired directional persistence of vesicle movement upon p0071 depletion.

View Article and Find Full Text PDF

Adherens junctions (AJs) and desmosomes connect the actin and keratin filament networks of adjacent cells into a mechanical unit. Whereas AJs function in mechanosensing and in transducing mechanical forces between the plasma membrane and the actomyosin cytoskeleton, desmosomes and intermediate filaments (IFs) provide mechanical stability required to maintain tissue architecture and integrity when the tissues are exposed to mechanical stress. Desmosomes are essential for stable intercellular cohesion, whereas keratins determine cell mechanics but are not involved in generating tension.

View Article and Find Full Text PDF

Desmosomes are cell-cell adhesive structures essential for tissue integrity of the epidermis and the heart. Their constituents belong to multigene families giving rise to desmosomes of variable composition. So far, the functional significance of context-dependent composition in desmosome formation, dynamics, or stability during epidermal differentiation is incompletely understood.

View Article and Find Full Text PDF

Desmosomes mediate strong intercellular adhesion through desmosomal cadherins that interact with intracellular linker proteins including plakophilins (PKPs) 1-3 to anchor the intermediate filaments. PKPs show overlapping but distinct expression patterns in the epidermis. So far, the contribution of individual PKPs in differentially regulating desmosome function is incompletely understood.

View Article and Find Full Text PDF

The regulation of adhesion and growth is important for epithelial function and dysfunction. β-catenin (armadillo in Drosophila) is the prototype of a multifunctional molecule that regulates cell adhesion via adherens junctions and cell signaling via LEF/TCF transcription factors. Desmosomal armadillo proteins comprise plakoglobin and the plakophilins 1, 2, and 3.

View Article and Find Full Text PDF

p0071 is an intercellular junction protein of the p120 catenin family. We have identified Rab11a as a novel interaction partner of p0071. p0071 interacted preferentially with active Rab11a.

View Article and Find Full Text PDF

Loss of fragile X mental retardation protein (FMRP) causes synaptic dysfunction and intellectual disability. FMRP is an RNA-binding protein that controls the translation or turnover of a subset of mRNAs. Identifying these target transcripts is an important step toward understanding the pathology of the disease.

View Article and Find Full Text PDF

P0071 is a member of a subfamily of armadillo proteins that also comprises p120-catenin (p120ctn), δ-catenin/NPRAP, ARVCF and the more distantly related plakophilins 1-3. These proteins share a conserved central domain consisting of a series of repeated motifs, the armadillo repeats, which is flanked by more diverse amino- and carboxy-terminal domains. P0071 and the related proteins were first described as components of adherens junctions with a function in clustering and stabilizing cadherins, thereby controlling intercellular adhesion.

View Article and Find Full Text PDF

Downregulation of adherens junction proteins is a frequent event in carcinogenesis. How desmosomal proteins contribute to tumor formation by regulating the balance between adhesion and proliferation is not well understood. The desmosomal protein plakophilin 1 can increase intercellular adhesion by recruiting desmosomal proteins to the plasma membrane or stimulate proliferation by enhancing translation rates.

View Article and Find Full Text PDF

Inherited mutations in the folliculin (FLCN) gene cause the Birt-Hogg-Dubé syndrome of familial hair follicle tumours (fibrofolliculomas), lung cysts and kidney tumours. Though folliculin has features of a tumour suppressor, the precise function of the FLCN gene product is not well characterized. We identified plakophilin-4 (p0071) as a potential novel folliculin interacting protein by yeast two-hybrid analysis.

View Article and Find Full Text PDF

Any rational therapy benefits from an understanding of basic biology and the simplicity of its strategy. Among keratinopathies, epidermolytic palmoplantar keratoderma stands out by virtue of hotspot mutations in the KRT9 gene, exclusively expressed in the palmoplantar epidermis. In this issue, Leslie Pedrioli et al.

View Article and Find Full Text PDF