Publications by authors named "Hattersley A"

Objective: Mutations in the human HNF4A gene encoding the hepatocyte nuclear factor (HNF)-4alpha are known to cause maturity-onset diabetes of the young (MODY), which is characterized by autosomal-dominant inheritance and impaired glucose-stimulated insulin secretion from pancreatic beta-cells. HNF-4alpha has a key role in regulating the multiple transcriptional factor networks in the islet. Recently, heterozygous mutations in the HNF4A gene were reported to cause transient hyperinsulinemic hypoglycemia associated with macrosomia.

View Article and Find Full Text PDF

Two recent, large whole-genome association studies (GWAS) in European populations have associated a approximately 47-kb region that contains part of the FTO gene with high body mass index (BMI). The functions of FTO and adjacent FTM in human biology are not clear. We examined expression of these genes in organs of mice segregating for monogenic obesity mutations, exposed to underfeeding/overfeeding, and to 4 degrees C.

View Article and Find Full Text PDF

Objective: In human pregnancy, placental weight is strongly associated with birth weight. It is uncertain whether there is regulation of the placenta by the fetus or vice versa. We aimed to test the hypothesis that placental growth is mediated, either directly or indirectly, by fetal insulin.

View Article and Find Full Text PDF

Objective: Insulin gene (INS) mutations have recently been described as a cause of permanent neonatal diabetes (PND). We aimed to determine the prevalence, genetics, and clinical phenotype of INS mutations in large cohorts of patients with neonatal diabetes and permanent diabetes diagnosed in infancy, childhood, or adulthood.

Research Design And Methods: The INS gene was sequenced in 285 patients with diabetes diagnosed before 2 years of age, 296 probands with maturity-onset diabetes of the young (MODY), and 463 patients with young-onset type 2 diabetes (nonobese, diagnosed <45 years).

View Article and Find Full Text PDF

The rapid increase in the population prevalence of type 2 diabetes mellitus (T2DM) in youth can only be explained by changes in lifestyle. However, even when most members of a population have changed their lifestyle, only a minority of children develop diabetes, and genetic factors are important in determining which children are affected. Support for the role of genetic factors comes from epidemiological evidence that diabetes in youth is most common in high diabetes prevalence racial groups, in subjects with a strong family history, and in girls.

View Article and Find Full Text PDF

Gain-of-function mutations in the genes encoding the ATP-sensitive potassium (K(ATP)) channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) are a common cause of neonatal diabetes mellitus. Here we investigate the molecular mechanism by which two heterozygous mutations in the second nucleotide-binding domain (NBD2) of SUR1 (R1380L and R1380C) separately cause neonatal diabetes.

View Article and Find Full Text PDF

Objective: Neonatal diabetes can result from mutations in the Kir6.2 or sulfonylurea receptor 1 (SUR1) subunits of the ATP-sensitive K(+) channel. Transfer from insulin to oral sulfonylureas in patients with neonatal diabetes due to Kir6.

View Article and Find Full Text PDF

Background: Hepatocyte nuclear factor-1beta (HNF-1beta) is a critical transcription factor in pancreatic and renal development. Our previous report identified HNF-1beta mutations in 23/160 patients with unexplained renal disease. The most common phenotype is renal cysts, which is frequently associated with early-onset diabetes in the renal cysts and diabetes (RCAD) syndrome.

View Article and Find Full Text PDF

We have genotyped 14,436 nonsynonymous SNPs (nsSNPs) and 897 major histocompatibility complex (MHC) tag SNPs from 1,000 independent cases of ankylosing spondylitis (AS), autoimmune thyroid disease (AITD), multiple sclerosis (MS) and breast cancer (BC). Comparing these data against a common control dataset derived from 1,500 randomly selected healthy British individuals, we report initial association and independent replication in a North American sample of two new loci related to ankylosing spondylitis, ARTS1 and IL23R, and confirmation of the previously reported association of AITD with TSHR and FCRL3. These findings, enabled in part by increased statistical power resulting from the expansion of the control reference group to include individuals from the other disease groups, highlight notable new possibilities for autoimmune regulation and suggest that IL23R may be a common susceptibility factor for the major 'seronegative' diseases.

View Article and Find Full Text PDF

Aim: Mutations in the ABCC8 gene encoding the SUR1 subunit of the pancreatic ATP-sensitive potassium channel cause permanent neonatal diabetes mellitus (PNDM) and transient neonatal diabetes mellitus (TNDM). We reviewed the existing literature, extended the number of cases and explored genotype-phenotype correlations.

Methods: Mutations were identified by sequencing in patients diagnosed with diabetes before 6 months without a KCNJ11 mutation.

View Article and Find Full Text PDF

We report 10 heterozygous mutations in the human insulin gene in 16 probands with neonatal diabetes. A combination of linkage and a candidate gene approach in a family with four diabetic members led to the identification of the initial INS gene mutation. The mutations are inherited in an autosomal dominant manner in this and two other small families whereas the mutations in the other 13 patients are de novo.

View Article and Find Full Text PDF

Aims/hypothesis: Heterozygous mutations of glucokinase (GCK) and hepatocyte nuclear factor-1 alpha (HNF1A; also known as hepatic transcription factor 1 [TCF1]) genes are the most common cause of MODY. Genomic deletions of the HNF1B (also known as TCF2) gene have recently been shown to account for one third of mutations causing renal cysts and diabetes syndrome. We investigated the prevalence of partial and whole gene deletions in UK patients meeting clinical criteria for GCK or HNF-1alpha/-4alpha MODY and in whom no mutation had been identified by sequence analysis.

View Article and Find Full Text PDF

Objective: Type 2 diabetes is characterized by impaired pancreatic beta-cell function and decreased insulin sensitivity. Genome-wide association studies have identified common, novel type 2 diabetes susceptibility loci within the FTO, CDKAL1, CDKN2A/CDKN2B, IGF2BP2, HHEX/IDE, and SLC30A8 gene regions. Our objective was to explore the relationships between the diabetes-associated alleles and measures of beta-cell function and whole-body insulin sensitivity.

View Article and Find Full Text PDF

Human height is a classic, highly heritable quantitative trait. To begin to identify genetic variants influencing height, we examined genome-wide association data from 4,921 individuals. Common variants in the HMGA2 oncogene, exemplified by rs1042725, were associated with height (P = 4 x 10(-8)).

View Article and Find Full Text PDF

Aims: Common polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene are strongly associated with Type 2 diabetes. Many studies include a large proportion of cases enriched for family history or young age of diagnosis and may therefore provide an overestimation of the general population risk. We aimed to compare the impact of TCF7L2 in UK community-based Type 2 diabetic subjects with that in subjects ascertained for genetic studies.

View Article and Find Full Text PDF

Transcription factor-7-like 2 (TCF7L2) is the most important type 2 diabetes susceptibility gene identified to date, with common intronic variants strongly associated with diabetes in all major racial groups. This ubiquitous transcription factor in the Wnt signaling pathway was not previously known to be involved in glucose homeostasis, so defining the underlying mechanism(s) will provide new insights into diabetes. In this issue of the JCI, Lyssenko and colleagues report on their human and isolated islet studies and suggest that the risk allele increases TCF7L2 expression in the pancreatic beta cell, reducing insulin secretion and hence predisposing the individual to diabetes (see the related article beginning on page 2155).

View Article and Find Full Text PDF

Heterozygous activating mutations in the KCNJ11 gene encoding the pore-forming Kir6.2 subunit of the pancreatic beta cell K(ATP) channel are the most common cause of permanent neonatal diabetes (PNDM). Patients with PNDM due to a heterozygous activating mutation in the ABCC8 gene encoding the SUR1 regulatory subunit of the K(ATP) channel have recently been reported.

View Article and Find Full Text PDF

Objectives: Activating mutations in the human KCNJ11 gene, encoding the pore-forming subunit (Kir6.2) of the ATP-sensitive potassium (K(ATP)) channel, are one cause of neonatal diabetes mellitus. In a few patients, KCNJ11 mutations cause a triad of developmental delay, epilepsy, and neonatal diabetes (DEND syndrome).

View Article and Find Full Text PDF

We studied genes involved in pancreatic beta cell function and survival, identifying associations between SNPs in WFS1 and diabetes risk in UK populations that we replicated in an Ashkenazi population and in additional UK studies. In a pooled analysis comprising 9,533 cases and 11,389 controls, SNPs in WFS1 were strongly associated with diabetes risk. Rare mutations in WFS1 cause Wolfram syndrome; using a gene-centric approach, we show that variation in WFS1 also predisposes to common type 2 diabetes.

View Article and Find Full Text PDF

Mitochondria play a central role in the secretion of insulin by pancreatic beta-cells, and pathogenic mutations of mitochondrial DNA (mtDNA) can cause diabetes. The aetiology of type 2 diabetes has a strong genetic component, raising the possibility that genetic variants of mtDNA alter the risk of developing the disorder. Recent studies have produced conflicting results.

View Article and Find Full Text PDF

Aims: Mitochondrial depletion in pancreatic beta cells is known to reduce glucose stimulated insulin secretion. We aimed to determine whether the offspring of patients with early onset Type 2 diabetes had reduced peripheral blood mitochondrial content relative to control subjects and whether this could lead to a predisposition to type 2 diabetes in later life.

Methods: We measured the levels of mitochondria relative to a single copy genomic target by real time polymerase chain reaction in a series of peripheral blood samples taken from the offspring of Caucasian patients with Type 2 diabetes and matched controls.

View Article and Find Full Text PDF

Objective: There is considerable interindividual variation in sulfonylurea response in type 2 diabetes. Transcription factor 7-like 2 (TCF7L2) variants have been identified to be strongly associated with type 2 diabetes risk, probably due to decreased beta-cell function. We hypothesized that variation in TCF7L2 would influence response to sulfonylureas but not metformin.

View Article and Find Full Text PDF

The role of genes in normal birth-weight variation is poorly understood, and it has been suggested that the genetic component of fetal growth is small. Type 2 diabetes genes may influence birth weight through maternal genotype, by increasing maternal glycemia in pregnancy, or through fetal genotype, by altering fetal insulin secretion. We aimed to assess the role of the recently described type 2 diabetes gene TCF7L2 in birth weight.

View Article and Find Full Text PDF