The polarized cross-section ratio σ_{LT^{'}}/σ_{0} from hard exclusive π^{-}Δ^{++} electroproduction off an unpolarized hydrogen target has been extracted based on beam-spin asymmetry measurements using a 10.2 GeV/10.6 GeV incident electron beam and the CLAS12 spectrometer at Jefferson Lab.
View Article and Find Full Text PDFDeeply virtual Compton scattering (DVCS) allows one to probe generalized parton distributions describing the 3D structure of the nucleon. We report the first measurement of the DVCS beam-spin asymmetry using the CLAS12 spectrometer with a 10.2 and 10.
View Article and Find Full Text PDFWe report results of Λ hyperon production in semi-inclusive deep-inelastic scattering off deuterium, carbon, iron, and lead targets obtained with the CLAS detector and the Continuous Electron Beam Accelerator Facility 5.014 GeV electron beam. These results represent the first measurements of the Λ multiplicity ratio and transverse momentum broadening as a function of the energy fraction (z) in the current and target fragmentation regions.
View Article and Find Full Text PDFWe report the first measurements of deep inelastic scattering spin-dependent azimuthal asymmetries in back-to-back dihadron electroproduction in the deep inelastic scattering process. In this reaction, two hadrons are produced in opposite hemispheres along the z axis in the virtual photon-target nucleon center-of-mass frame, with the first hadron produced in the current-fragmentation region and the second in the target-fragmentation region. The data were taken with longitudinally polarized electron beams of 10.
View Article and Find Full Text PDFWe present the first measurement of dihadron angular correlations in electron-nucleus scattering. The data were taken with the CLAS detector and a 5.0 GeV electron beam incident on deuterium, carbon, iron, and lead targets.
View Article and Find Full Text PDFThe ratio of the nucleon F_{2} structure functions, F_{2}^{n}/F_{2}^{p}, is determined by the MARATHON experiment from measurements of deep inelastic scattering of electrons from ^{3}H and ^{3}He nuclei. The experiment was performed in the Hall A Facility of Jefferson Lab using two high-resolution spectrometers for electron detection, and a cryogenic target system which included a low-activity tritium cell. The data analysis used a novel technique exploiting the mirror symmetry of the two nuclei, which essentially eliminates many theoretical uncertainties in the extraction of the ratio.
View Article and Find Full Text PDFHigh precision measurements of the polarized electron beam-spin asymmetry in semi-inclusive deep inelastic scattering (SIDIS) from the proton have been performed using a 10.6 GeV incident electron beam and the CLAS12 spectrometer at Jefferson Lab. We report here a high precision multidimensional study of single π^{+} SIDIS data over a large kinematic range in Bjorken x, fractional energy, and transverse momentum of the hadron as well as photon virtualities Q^{2} ranging from 1-7 GeV^{2}.
View Article and Find Full Text PDFStrange matter is believed to exist in the cores of neutron stars based on simple kinematics. If this is true, then hyperon-nucleon interactions will play a significant part in the neutron star equation of state. Yet, compared to other elastic scattering processes, there is very little data on Λ-N scattering.
View Article and Find Full Text PDFWe present the first measurement of the timelike Compton scattering process, γp→p^{'}γ^{*}(γ^{*}→e^{+}e^{-}), obtained with the CLAS12 detector at Jefferson Lab. The photon beam polarization and the decay lepton angular asymmetries are reported in the range of timelike photon virtualities 2.25 View Article and Find Full Text PDF
The observation of beam spin asymmetries in two-pion production in semi-inclusive deep inelastic scattering off an unpolarized proton target is reported. The data presented here were taken in the fall of 2018 with the CLAS12 spectrometer using a 10.6 GeV longitudinally spin-polarized electron beam delivered by CEBAF at JLab.
View Article and Find Full Text PDFThe quark structure of the f_{2}(1270) meson has, for many years, been assumed to be a pure quark-antiquark (qq[over ¯]) resonance with quantum numbers J^{PC}=2^{++}. Recently, it was proposed that the f_{2}(1270) is a molecular state made from the attractive interaction of two ρ mesons. Such a state would be expected to decay strongly to final states with charged pions due to the dominant decay ρ→π^{+}π^{-}, whereas decay to two neutral pions would likely be suppressed.
View Article and Find Full Text PDFPhys Rev Lett
February 2021
A first measurement of the longitudinal beam spin asymmetry A_{LU} in the semi-inclusive electroproduction of pairs of charged pions is reported. A_{LU} is a higher-twist observable and offers the cleanest access to the nucleon twist-3 parton distribution function e(x). Data have been collected in the Hall-B at Jefferson Lab by impinging a 5.
View Article and Find Full Text PDFWe have measured beam-spin asymmetries to extract the sinϕ moment A_{LU}^{sinϕ} from the hard exclusive e[over →]p→e^{'}nπ^{+} reaction above the resonance region, for the first time with nearly full coverage from forward to backward angles in the center of mass. The A_{LU}^{sinϕ} moment has been measured up to 6.6 GeV^{2} in -t, covering the kinematic regimes of generalized parton distributions (GPD) and baryon-to-meson transition distribution amplitudes (TDA) at the same time.
View Article and Find Full Text PDFWe report the first measurement of the (e,e^{'}p) three-body breakup reaction cross sections in helium-3 (^{3}He) and tritium (^{3}H) at large momentum transfer [⟨Q^{2}⟩≈1.9 (GeV/c)^{2}] and x_{B}>1 kinematics, where the cross section should be sensitive to quasielastic (QE) scattering from single nucleons. The data cover missing momenta 40≤p_{miss}≤500 MeV/c that, in the QE limit with no rescattering, equals the initial momentum of the probed nucleon.
View Article and Find Full Text PDFIn the past two decades, deeply virtual Compton scattering of electrons has been successfully used to advance our knowledge of the partonic structure of the free proton and investigate correlations between the transverse position and the longitudinal momentum of quarks inside the nucleon. Meanwhile, the structure of bound nucleons in nuclei has been studied in inclusive deep-inelastic lepton scattering experiments off nuclear targets, showing a significant difference in longitudinal momentum distribution of quarks inside the bound nucleon, known as the EMC effect. In this Letter, we report the first beam spin asymmetry (BSA) measurement of exclusive deeply virtual Compton scattering off a proton bound in ^{4}He.
View Article and Find Full Text PDFWe measured the triple coincidence A(e,e^{'}np) and A(e,e^{'}pp) reactions on carbon, aluminum, iron, and lead targets at Q^{2}>1.5 (GeV/c)^{2}, x_{B}>1.1 and missing momentum >400 MeV/c.
View Article and Find Full Text PDFFirst measurements of double-polarization observables in ω photoproduction off the proton are presented using transverse target polarization and data from the CEBAF Large Acceptance Spectrometer (CLAS) FROST experiment at Jefferson Lab. The beam-target asymmetry F has been measured using circularly polarized, tagged photons in the energy range 1200-2700 MeV, and the beam-target asymmetries H and P have been measured using linearly polarized, tagged photons in the energy range 1200-2000 MeV. These measurements significantly increase the database on polarization observables.
View Article and Find Full Text PDFWe measured the g_{1} spin structure function of the deuteron at low Q^{2}, where QCD can be approximated with chiral perturbation theory (χPT). The data cover the resonance region, up to an invariant mass of W≈1.9 GeV.
View Article and Find Full Text PDFWe report on the first measurement of the beam-spin asymmetry in the exclusive process of coherent deeply virtual Compton scattering off a nucleus. The experiment uses the 6 GeV electron beam from the Continuous Electron Beam Accelerator Facility (CEBAF) accelerator at Jefferson Lab incident on a pressurized ^{4}He gaseous target placed in front of the CEBAF Large Acceptance Spectrometer (CLAS). The scattered electron is detected by CLAS and the photon by a dedicated electromagnetic calorimeter at forward angles.
View Article and Find Full Text PDFWe report the first beam-target double-polarization asymmetries in the γ+n(p)→π^{-}+p(p) reaction spanning the nucleon resonance region from invariant mass W=1500 to 2300 MeV. Circularly polarized photons and longitudinally polarized deuterons in solid hydrogen deuteride (HD) have been used with the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The exclusive final state has been extracted using three very different analyses that show excellent agreement, and these have been used to deduce the E polarization observable for an effective neutron target.
View Article and Find Full Text PDFUnpolarized and beam-polarized fourfold cross sections (d^{4}σ/dQ^{2}dx_{B}dtdϕ) for the ep→e^{'}p^{'}γ reaction were measured using the CLAS detector and the 5.75-GeV polarized electron beam of the Jefferson Lab accelerator, for 110 (Q^{2},x_{B},t) bins over the widest phase space ever explored in the valence-quark region. Several models of generalized parton distributions (GPDs) describe the data well at most of our kinematics.
View Article and Find Full Text PDFThere is a significant discrepancy between the values of the proton electric form factor, G(E)(p), extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of G(E)(p) from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector.
View Article and Find Full Text PDFPhys Rev Lett
January 2015
We measured the ratios of electroproduction cross sections from a proton target for three exclusive meson-baryon final states: ΛK(+), pπ(0), and nπ(+), with the CLAS detector at Jefferson Lab. Using a simple model of quark hadronization, we extract qq creation probabilities for the first time in exclusive two-body production, in which only a single qq pair is created. We observe a sizable suppression of strange quark-antiquark pairs compared to nonstrange pairs, similar to that seen in high-energy production.
View Article and Find Full Text PDF