Publications by authors named "Hatsune Chiba"

Monoallelic gene expression occurs in various mammalian cells and can be regulated genetically, epigenetically and/or stochastically. We identified 145 monoallelically expressed genes (MoEGs), including seven known imprinted genes, in mouse embryonic stem cells (ESCs) derived from reciprocal F1 hybrid blastocysts and cultured in 2i/LIF. As all MoEGs except for the imprinted genes were expressed in a genetic-origin-dependent manner, we focused on this class of MoEGs for mechanistic studies.

View Article and Find Full Text PDF

Metabolites are sensitive indicators of moment-to-moment cellular status and activity. Expecting that tissue-specific metabolic signatures unveil a unique function of the tissue, we examined metabolomes of mouse liver and testis and found that an unusual metabolite, 2-hydroxyglutarate (2-HG), was abundantly accumulated in the testis. 2-HG can exist as D- or L-enantiomer, and both enantiomers interfere with the activities of 2-oxoglutarate (2-OG)-dependent dioxygenases, such as the Jumonji family of histone demethylases.

View Article and Find Full Text PDF

Background: Frozen-thawed embryo transfer (FET) is increasingly available for the improvement of the success rate of assisted reproductive technologies other than fresh embryo transfer (ET). There have been numerous findings that FET provides better obstetric and perinatal outcomes. However, the birth weight of infants conceived using FET is heavier than that of those conceived via ET.

View Article and Find Full Text PDF

DNA methylation plays important roles in the production and functioning of spermatozoa. Recent studies have suggested that DNA methylation patterns in spermatozoa can change with age, but the regions susceptible to age-related methylation changes remain to be fully elucidated. In this study, we conducted genome-scale DNA methylation profiling of spermatozoa obtained from C57BL/6N mice at 8 weeks (8w), 18 weeks (18w) and 17 months of age (17m).

View Article and Find Full Text PDF
Article Synopsis
  • DNA methylation is significantly reprogrammed after fertilization, leading to similar methylation patterns in parental genomes post-implantation, with exceptions at certain germline differentially methylated regions (gDMRs).
  • Researchers discovered that a significant portion of transient maternally methylated gDMRs in human blastocysts retains their maternal methylation in trophoblast cells from placentas, contrary to previous findings.
  • The study suggests that some placenta-specific mDMRs are linked to the expression of imprinted genes and reveals variability in genomic imprinting among mammals, underlining the importance of understanding DNA methylation in relation to placental development and developmental disorders.
View Article and Find Full Text PDF

The most common form of male infertility is a low sperm count, known as oligozoospermia. Studies suggest that oligozoospermia is associated with epigenetic alterations. Epigenetic alterations in sperm, which may arise due to the exposure of gametes to environmental factors or those that pre-exist in the sperm of infertile individuals, may contribute to the increased incidence of normally rare imprinting disorders in babies conceived after assisted reproductive technology using the sperm of infertile men.

View Article and Find Full Text PDF

DNA methylation is globally reprogrammed during mammalian preimplantation development, which is critical for normal development. Recent reduced representation bisulfite sequencing (RRBS) studies suggest that the methylome dynamics are essentially conserved between human and mouse early embryos. RRBS is known to cover 5-10% of all genomic CpGs, favoring those contained within CpG-rich regions.

View Article and Find Full Text PDF

There has been an increase in incidence reports of rare imprinting disorders associated with assisted reproductive technology (ART). ART, including in vitro fertilization and intracytoplasmic sperm injections, is an important treatment for infertile people of reproductive age and increasingly produces children. The identification of epigenetic changes at imprinted loci in ART infants has led to the suggestion that ART techniques themselves may predispose embryos to acquire imprinting errors and diseases.

View Article and Find Full Text PDF

Animals cloned by somatic cell nuclear transfer (SCNT) provide a unique model for understanding the mechanisms of nuclear epigenetic reprogramming to a state of totipotency. Though many phenotypic abnormalities have been demonstrated in cloned animals, the underlying mechanisms are not well understood. In this study, we performed transcriptome-wide allelic expression analyses in brain and placental tissues of cloned mice.

View Article and Find Full Text PDF

There have been increased incident reports of rare imprinting disorders associated with assisted reproductive technology (ART). ART is an important treatment for infertile people of reproductive age and is increasingly common. The identification of epigenetic changes at imprinted loci in ART infants has led to the suggestion that the techniques themselves may predispose embryos to acquisition of imprinting errors and disease.

View Article and Find Full Text PDF

DNA methylation is an epigenetic modification that plays a crucial role in normal mammalian development, retrotransposon silencing, and cellular reprogramming. Although methylation mainly occurs on the cytosine in a CG site, non-CG methylation is prevalent in pluripotent stem cells, brain, and oocytes. We previously identified non-CG methylation in several CG-rich regions in mouse germinal vesicle oocytes (GVOs), but the overall distribution of non-CG methylation and the enzymes responsible for this modification are unknown.

View Article and Find Full Text PDF

Within the vertebrate groups, only mammals are subject to a specialized epigenetic process termed genomic imprinting in which genes are preferentially expressed from one parental allele. Imprinted expression has been reported for >100 mouse genes and, for approximately one-quarter of these genes, the imprinted expression is specific to the placenta (or extraembryonic tissues). This seemingly placenta-specific imprinted expression has garnered much attention, as has the apparent lack of conserved imprinting between the human and mouse placenta.

View Article and Find Full Text PDF

DNA methylation is extensively reprogrammed during the early phases of mammalian development, yet genomic targets of this process are largely unknown. We optimized methylated DNA immunoprecipitation for low numbers of cells and profiled DNA methylation during early development of the mouse embryonic lineage in vivo. We observed a major epigenetic switch during implantation at the transition from the blastocyst to the postimplantation epiblast.

View Article and Find Full Text PDF

In the male and female germ-lines of mice, both of the two de novo DNA methyltransferases Dnmt3a and Dnmt3b are expressed. By the conditional knockout experiments using the Tnap-Cre gene, we previously showed that deletion of Dnmt3a in primordial germ cells disrupts paternal and maternal imprinting, however, Dnmt3b mutants did not show any defect. Here, we have knocked out Dnmt3a after birth in growing oocytes by using the Zp3-Cre gene and obtained genetic evidence that de novo methylation by Dnmt3a during the oocyte growth stage is indispensable for maternal imprinting.

View Article and Find Full Text PDF

Mouse blastocyst stage embryo stained for histone H3 lysine-27 trimethylation (red) and DNA (blue). H3K27me3 marks the inactive X chromosome. The study by Chiba et al.

View Article and Find Full Text PDF

In female mouse embryos, the paternal X chromosome (Xp) is preferentially inactivated during preimplantation development and trophoblast differentiation. This imprinted X-chromosome inactivation (XCI) is partly due to an activating imprint on the maternal X chromosome (Xm), which is set during oocyte growth. However, the nature of this imprint is unknown.

View Article and Find Full Text PDF

Parental origin-specific DNA methylation regulates the monoallelic expression of the mammalian imprinted genes. The methylation marks or imprints are established in the parental germline and maintained throughout embryonic development. However, it is unclear how the methylation imprints are maintained through extensive demethylation in cleavage-stage preimplantation embryos.

View Article and Find Full Text PDF

RNA interference (RNAi) is a mechanism by which double-stranded RNAs (dsRNAs) suppress specific transcripts in a sequence-dependent manner. dsRNAs are processed by Dicer to 21-24-nucleotide small interfering RNAs (siRNAs) and then incorporated into the argonaute (Ago) proteins. Gene regulation by endogenous siRNAs has been observed only in organisms possessing RNA-dependent RNA polymerase (RdRP).

View Article and Find Full Text PDF