Subtropical Mode Water (STMW), characterized by vertically uniform temperature of ~17°C, is distributed horizontally over 5000 kilometers at the 100- to 500-meter depths in the subtropical North Pacific Ocean. Its formation and spreading fluctuate in relation to the Pacific Decadal Oscillation and the Kuroshio path variation, but the feedback from STMW on the sea surface temperature (SST) and the overlying atmosphere remains unclear. Using Argo profiling float data, we show that STMW south of Japan, whose thickness varies decadally, modulates the overlying thermal structure throughout the year by increasing isotherm uplift with increasing thickness.
View Article and Find Full Text PDFSome of the heaviest snowfalls in urban areas in the world occur in Japan, particularly in regions that face the Japan Sea. Many heavy snowfalls are produced by a Japan Sea polar air mass convergence zone (JPCZ), which is an atmospheric river-like cloud zone that forms when Siberian cold air flows over the warm Japan Sea. Quantifying how the air-sea interaction strengthens the JPCZ is key to snowfall prediction.
View Article and Find Full Text PDFThe interbasin exchange between the Sea of Okhotsk and the North Pacific governs the intermediate water ventilation and fertilization of the nutrient-rich subpolar Pacific, and thus has an enormous influence on the North Pacific. However, the mechanism of this exchange is puzzling; current studies have not explained how the western boundary current (WBC) of the subarctic North Pacific intrudes only partially into the Sea of Okhotsk. High-resolution models often exhibit unrealistically small exchanges, as the WBC overshoots passing by deep straits and does not induce exchange flows.
View Article and Find Full Text PDF