Publications by authors named "Hatsumi Goda"

The demand for n-3 long-chain polyunsaturated fatty acids (n-3LC-PUFAs), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), will exceed their supply in the near future, and a sustainable source of n-3LC-PUFAs is needed. Thraustochytrids are marine protists characterized by anaerobic biosynthesis of DHA via polyunsaturated fatty acid synthase (PUFA-S). Analysis of a homemade draft genome database suggested that Parietichytrium sp.

View Article and Find Full Text PDF

Cryptococcosis is an infectious disease caused by pathogenic fungi, such as Cryptococcus neoformans and Cryptococcus gattii. The ceramide structure (methyl-d18:2/h18:0) of C. neoformans glucosylceramide (GlcCer) is characteristic and strongly related to its pathogenicity.

View Article and Find Full Text PDF

Endoglycoceramidase (EGCase) is a glycosidase capable of hydrolyzing the β -glycosidic linkage between the oligosaccharides and ceramides of glycosphingolipids (GSLs). Three molecular species of EGCase differing in specificity were found in the culture fluid of Rhodococcus equi (formerly Rhodococcus sp. M-750) and designated EGCase I, II, and III.

View Article and Find Full Text PDF

In a previous study, we demonstrated that beta1,3-N-acetylglucosaminyltransferase 5 (B3gnt5) is a lactotriaosylceramide (Lc(3)Cer) synthase that synthesizes a precursor structure for lacto/neolacto-series glycosphingolipids (GSLs) in in vitro experiments. Here, we generated B3gnt5-deficient (B3gnt5(-/-)) mice to investigate the in vivo biological functions of lacto/neolacto-series GSLs. In biochemical analyses, lacto/neolacto-series GSLs were confirmed to be absent and no Lc(3)Cer synthase activity was detected in the tissues of these mice.

View Article and Find Full Text PDF

We report here the molecular cloning, expression and characterization of a novel endo-alpha-N-acetylgalactosaminidase, classified into the GH101 family, from Enterococcus faecalis (endo-EF). The recombinant endo-EF was found to catalyze the liberation of core1-disaccharides (Galbeta1-3GalNAc) from core1-pNP (Galbeta1-3GalNAcalpha-pNP) like other GH101 family enzymes. However, endo-EF seems to differ in specificity from the GH101 enzymes reported to date, because it was able to release trisaccharides from core2-pNP (Galbeta1-3[GlcNAcbeta1-6]GalNAcalpha-pNP) and tetrasaccharides from Gal-core2-pNP (Galbeta1-3[Galbeta1-3GlcNAcbeta1-6]GalNAcalpha-pNP).

View Article and Find Full Text PDF