Publications by authors named "Hathaichanok Phuengkham"

The development of protease-activatable drugs and diagnostics requires identifying substrates specific to individual proteases. However, this process becomes increasingly difficult as the number of target proteases increases because most substrates are promiscuously cleaved by multiple proteases. We introduce a method-substrate libraries for compressed sensing of enzymes (SLICE)-for selecting libraries of promiscuous substrates that classify protease mixtures (1) without deconvolution of compressed signals and (2) without highly specific substrates.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) therapy does not benefit the majority of treated patients, and those who respond to the therapy can become resistant to it. Here we report the design and performance of systemically administered protease activity sensors conjugated to anti-programmed cell death protein 1 (αPD1) antibodies for the monitoring of antitumour responses to ICB therapy. The sensors consist of a library of mass-barcoded protease substrates that, when cleaved by tumour proteases and immune proteases, are released into urine, where they can be detected by mass spectrometry.

View Article and Find Full Text PDF

Simultaneous delivery of mRNA to multiple populations of antigen (Ag)-specific CD8 T cells is challenging given the diversity of peptide epitopes and polymorphism of class I major histocompatibility complexes (MHCI). We developed Ag-presenting nanoparticles (APNs) for mRNA delivery using pMHCI molecules that were refolded with photocleavable peptides to allow rapid ligand exchange by UV light and site-specifically conjugated with a lipid tail for postinsertion into preformed mRNA lipid nanoparticles. Across different TCR transgenic mouse models (P14, OT-1, and Pmel), UV-exchanged APNs bound and transfected their cognate Ag-specific CD8 T cells equivalent to APNs produced using conventionally refolded pMHCI molecules.

View Article and Find Full Text PDF

Treating solid malignancies with chimeric antigen receptor (CAR) T cells typically results in poor responses. Immunomodulatory biologics delivered systemically can augment the cells' activity, but off-target toxicity narrows the therapeutic window. Here we show that the activity of intratumoural CAR T cells can be controlled photothermally via synthetic gene switches that trigger the expression of transgenes in response to mild temperature elevations (to 40-42 °C).

View Article and Find Full Text PDF

The deficiency of antigen-specific T cells and the induction of various treatment-induced immunosuppressions still limits the clinical benefit of cancer immunotherapy. Although the chemo-immunotherapy adjuvanted with Toll-like receptor 7/8 agonist (TLR 7/8a) induces immunogenic cell death (ICD) and in situ vaccination effect, indoleamine 2,3-dioxygenase (IDO) is also significantly increased in the tumor microenvironment (TME) and tumor-draining lymph node (TDLN), which offsets the activated antitumor immunity. To address the treatment-induced immunosuppression, an assemblable immune modulating suspension (AIMS) containing ICD inducer (paclitaxel) and supra-adjuvant (immune booster; R848 as a TLR 7/8a, immunosuppression reliever; epacadostat as an IDO inhibitor) is suggested and shows that it increases cytotoxic T lymphocytes and relieves the IDO-related immunosuppression (TGF-β, IL-10, myeloid-derived suppressor cells, and regulatory T cells) in both TME and TDLN, by the formation of in situ depot in tumor bed as well as by the efficient migration into TDLN.

View Article and Find Full Text PDF

Current cancer immunotherapy based on immune checkpoint blockade (ICB) still suffers from low response rate and systemic toxicity. To overcome the limitation, a novel therapeutic platform that can revert nonimmunogenic tumors into immunogenic phenotype is highly required. Herein, a designer scaffold loaded with both immune nanoconverters encapsulated with resiquimod (iNCVs (R848)) and doxorubicin, which provides the polarization of immunosuppressive tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) into tumoricidal antigen-presenting cells (APCs), rather than depleting them, as well as in situ vaccination that can be generated in vivo without the need to previously analyze and sequence tumor antigens to favor neoantigen-specific T cell responses is suggested.

View Article and Find Full Text PDF

The low response rate of current cancer immunotherapy suggests the presence of few antigen-specific T cells and a high number of immunosuppressive factors in tumor microenvironment (TME). Here, we develop a syringeable immunomodulatory multidomain nanogel (iGel) that overcomes the limitation by reprogramming of the pro-tumoral TME to antitumoral immune niches. Local and extended release of immunomodulatory drugs from iGel deplete immunosuppressive cells, while inducing immunogenic cell death and increased immunogenicity.

View Article and Find Full Text PDF

Cancer immunotherapies that harness the body's immune system to combat tumors have received extensive attention and become mainstream strategies for treating cancer. Despite promising results, some problems remain, such as the limited patient response rate and the emergence of severe immune-related adverse effects. For most patients, the therapeutic efficacy of cancer immunotherapy is mainly limited by the immunosuppressive tumor microenvironment (TME).

View Article and Find Full Text PDF

The development of biomaterial-based immune niches that can modulate immunosuppressive factors in tumor microenvironment (TME) will be a key technology for improving current cancer immunotherapy. Here, implantable, engineered 3D porous scaffolds are designed to generate synergistic action between myeloid-derived suppressor cell (MDSC)-depleting agents, which can accommodate the establishment of a permissive immunogenic microenvironment to counteract tumor-induced immunosuppression, and cancer vaccines consisting of whole tumor lysates and nanogel-based adjuvants, which can generate tumor antigen-specific T cell responses. The local peritumoral implantation of the synthetic immune niche (termed immuneCare-DISC, iCD) as a postsurgical treatment in an advanced-stage primary 4T1 breast tumor model generates systemic antitumor immunity and prevents tumor recurrence at the surgical site as well as the migration of residual tumor cells into the lungs, resulting in 100% survival.

View Article and Find Full Text PDF

In this study, we suggest a designer vaccine adjuvant that can mimic the drainage of pathogens into lymph nodes and activate innate immune response in lymph nodes. By the amination of multivalent carboxyl groups in poly-(γ-glutamic acid) (γ-PGA) nanomicelles, the size was reduced for rapid entry into lymphatic vessels, and the immunologically inert nanomicelles were turned into potential activators of inflammasomes. Aminated γ-PGA nanomicelles (aPNMs) induced NLRP3 inflammasome activation and the subsequent release of proinflammatory IL-1β.

View Article and Find Full Text PDF

Urinary tract infections (UTIs) are the most common type of hospital-acquired infection which cause significant morbidity and mortality. Antibacterial urinary devices to prevent UTIs are in great demand, while the problem of releasing antibacterials is still limited by duration of antibacterial release and hinders their clinical applications. This study investigated a new approach to sustain release of chlorhexidine (CHX) from urinary devices by coating of chlorhexidine-loaded nanospheres (CHX-NPs) on the surface.

View Article and Find Full Text PDF

Chlorophene-loaded nanospheres with various formulation parameters were evaluated. The optimal formulation was found at 0.1% w/v of poloxamer 407, 15 mL of ethyl acetate and 20% initial chlorophene loading that provided the suitable size (179 nm), the highest loading content (19.

View Article and Find Full Text PDF