Publications by authors named "Hatem Helal"

Atomic structure prediction and associated property calculations are the bedrock of chemical physics. Since high-fidelity ab initio modeling techniques for computing the structure and properties can be prohibitively expensive, this motivates the development of machine-learning (ML) models that make these predictions more efficiently. Training graph neural networks over large atomistic databases introduces unique computational challenges, such as the need to process millions of small graphs with variable size and support communication patterns that are distinct from learning over large graphs, such as social networks.

View Article and Find Full Text PDF