Publications by authors named "Hatchett S"

Article Synopsis
  • * This experiment produced 2.05 MJ of laser energy, resulting in 3.1 MJ of total fusion yield, which exceeds the Lawson criterion for ignition, demonstrating a key milestone in fusion research.
  • * The report details the advancements in target design, laser technology, and experimental methods that contributed to this historic achievement, validating over five decades of research in laboratory fusion.
View Article and Find Full Text PDF

Over the past decade, medical education has shifted from a time-based approach to a competency-based approach for surgical training. This transition presents many new systemic challenges. The Society for Improving Medical Professional Learning (SIMPL) was created to respond to these challenges through coordinated collaboration across an international network of medical educators.

View Article and Find Full Text PDF
Article Synopsis
  • * In inertially confined fusion, ignition allows the fusion process to spread into surrounding fuel, potentially leading to higher energy output.
  • * Recent experiments at the National Ignition Facility achieved capsule gains of 5.8 and approached ignition, even though "scientific breakeven" has not yet been fully realized.
View Article and Find Full Text PDF

Objective: The aims of this study were to determine whether physical rehabilitation intervention for individuals who required extracorporeal membrane oxygenation (ECMO) is associated with clinical outcomes and to assess whether the patient mobility response over initial rehabilitation sessions early in the intensive care unit (ICU) course predicts or is associated with survival, lengths of stay, discharge disposition, and 30-day readmissions.

Methods: This study was a 10-year retrospective practice analysis of adults who were critically ill and required ECMO for >72 hours in the cardiothoracic ICU at an academic medical center. Physical rehabilitation implemented during or following the initiation of ECMO was quantified on the basis of timing, frequency, and change in mobility level in response to the intervention over the first 4 consecutive sessions.

View Article and Find Full Text PDF

The implosion efficiency in inertial confinement fusion depends on the degree of stagnated fuel compression, density uniformity, sphericity, and minimum residual kinetic energy achieved. Compton scattering-mediated 50-200 keV x-ray radiographs of indirect-drive cryogenic implosions at the National Ignition Facility capture the dynamic evolution of the fuel as it goes through peak compression, revealing low-mode 3D nonuniformities and thicker fuel with lower peak density than simulated. By differencing two radiographs taken at different times during the same implosion, we also measure the residual kinetic energy not transferred to the hot spot and quantify its impact on the implosion performance.

View Article and Find Full Text PDF

Neutron spectra from secondary ^{3}H(d,n)α reactions produced by an implosion of a deuterium-gas capsule at the National Ignition Facility have been measured with order-of-magnitude improvements in statistics and resolution over past experiments. These new data and their sensitivity to the energy loss of fast tritons emitted from thermal ^{2}H(d,p)^{3}H reactions enable the first statistically significant investigation of charged-particle stopping via the emitted neutron spectrum. Radiation-hydrodynamic simulations, constrained to match a number of observables from the implosion, were used to predict the neutron spectra while employing two different energy loss models.

View Article and Find Full Text PDF

Radiation-driven, low-adiabat, cryogenic DT layered plastic capsule implosions were carried out on the National Ignition Facility (NIF) to study the sensitivity of performance to peak power and drive duration. An implosion with extended drive and at reduced peak power of 350 TW achieved the highest compression with fuel areal density of ~1.3±0.

View Article and Find Full Text PDF

A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques.

View Article and Find Full Text PDF

DT neutron yield (Y(n)), ion temperature (T(i)), and down-scatter ratio (dsr) determined from measured neutron spectra are essential metrics for diagnosing the performance of inertial confinement fusion (ICF) implosions at the National Ignition Facility (NIF). A suite of neutron-time-of-flight (nTOF) spectrometers and a magnetic recoil spectrometer (MRS) have been implemented in different locations around the NIF target chamber, providing good implosion coverage and the complementarity required for reliable measurements of Y(n), T(i), and dsr. From the measured dsr value, an areal density (ρR) is determined through the relationship ρR(tot) (g∕cm(2)) = (20.

View Article and Find Full Text PDF

Measurements of the neutron spectrum from the T(t,2n)4He (tt) reaction have been conducted using inertial confinement fusion implosions at the OMEGA laser facility. In these experiments, deuterium-tritium (DT) gas-filled capsules were imploded to study the tt reaction in thermonuclear plasmas at low reactant center-of-mass (c.m.

View Article and Find Full Text PDF

The National Ignition Facility has been used to compress deuterium-tritium to an average areal density of ~1.0±0.1 g cm(-2), which is 67% of the ignition requirement.

View Article and Find Full Text PDF

We present scaled demonstrations of backlighter sources, emitting bremsstrahlung x rays with photon energies above 75 keV, that we will use to record x-ray Compton radiographic snapshots of cold dense DT fuel in inertial confinement fusion implosions at the National Ignition Facility (NIF). In experiments performed at the Titan laser facility at Lawrence Livermore National Laboratory, we measured the source size and the bremsstrahlung spectrum as a function of laser intensity and pulse length from solid targets irradiated at 2x10(17)-5x10(18) W/cm(2) using 2-40 ps pulses. Using Au planar foils we achieved source sizes down to 5.

View Article and Find Full Text PDF

A neutron spectrometer, called a magnetic recoil spectrometer (MRS), has been built and implemented at the OMEGA laser facility [T. R. Boehly et al.

View Article and Find Full Text PDF

Three independent methods (extreme ultraviolet spectroscopy, imaging at 68 and 256 eV) have been used to measure planar target rear surface plasma temperature due to heating by hot electrons. The hot electrons are produced by ultraintense laser-plasma interactions using the 150 J, 0.5 ps Titan laser.

View Article and Find Full Text PDF

Measurements of plasma temperature at the rear surface of foil targets due to heating by hot electrons, which were produced in short pulse high intensity laser matter interactions using the 150 J, 0.5 ps Titan laser, are reported. Extreme ultraviolet (XUV) imaging at 256 and 68 eV energies is used to determine spatially resolved target rear surface temperature patterns by comparing absolute intensities to radiation hydrodynamic modeling.

View Article and Find Full Text PDF

The heating of solid targets irradiated by 5 x 10(20) W cm(-2), 0.8 ps, 1.05 microm wavelength laser light is studied by x-ray spectroscopy of the K-shell emission from thin layers of Ni, Mo, and V.

View Article and Find Full Text PDF

Monoenergetic proton radiography was used to make the first measurements of the long-time-scale dynamics and evolution of megagauss laser-plasma-generated magnetic field structures. While a 1-ns 10(14) W/cm2 laser beam is on, the field structure expands in tandem with a hemispherical plasma bubble, maintaining a rigorous 2D cylindrical symmetry. With the laser off, the bubble continues to expand as the field decays; however, the outer field structure becomes distinctly asymmetric, indicating instability.

View Article and Find Full Text PDF

Electromagnetic (E/B) fields generated by the interaction with plasmas of long-pulse, low-intensity laser beams relevant to inertial confinement fusion have been measured for the first time using novel monoenergetic proton radiography methods. High-resolution, time-gated radiography images of a plastic foil driven by a 10(14) W/cm(2) laser implied B fields of approximately 0.5 MG and E fields of approximately 1.

View Article and Find Full Text PDF

Protons accelerated by a picosecond laser pulse have been used to radiograph a 500 microm diameter capsule, imploded with 300 J of laser light in 6 symmetrically incident beams of wavelength 1.054 microm and pulse length 1 ns. Point projection proton backlighting was used to characterize the density gradients at discrete times through the implosion.

View Article and Find Full Text PDF

The development of ultra-intense lasers has facilitated new studies in laboratory astrophysics and high-density nuclear science, including laser fusion. Such research relies on the efficient generation of enormous numbers of high-energy charged particles. For example, laser-matter interactions at petawatt (10(15) W) power levels can create pulses of MeV electrons with current densities as large as 10(12) A cm(-2).

View Article and Find Full Text PDF

Ion-acceleration processes have been studied in ultraintense laser plasma interactions for normal incidence irradiation of solid deuterated targets via neutron spectroscopy. The experimental neutron spectra strongly suggest that the ions are preferentially accelerated radially, rather than into the bulk of the material from three-dimensional Monte Carlo fitting of the neutron spectra. Although the laser system has a 10(-7) contrast ratio, a two-dimensional magnetic hydrodynamics simulation shows that the laser pedestal generates a 10 mum scale length in the coronal plasma with a 3 mum scale-length plasma near the critical density.

View Article and Find Full Text PDF

Electron transport within solid targets, irradiated by a high-intensity short-pulse laser, has been measured by imaging K(alpha) radiation from high- Z layers (Cu, Ti) buried in low- Z (CH, Al) foils. Although the laser spot is approximately 10 microm [full width at half maximum (FWHM)], the electron beam spreads to > or =70 microm FWHM within <20 microm of penetration into an Al target then, at depths >100 microm, diverges with a 40 degree spreading angle. Monte Carlo and analytic models are compared to our data.

View Article and Find Full Text PDF

We have examined the implosion of an indirectly driven reentrant-cone shell target to clarify the issues attendant on compressing fuel for a fast ignition target. The target design is the hydrodynamic equivalent of a NIF cryoignition target scaled to be driven by Omega. Implosions were imaged with backlit x radiographs and modeled with LASNEX.

View Article and Find Full Text PDF