Bee venom contains a number of pharmacologically active components, including enzymes and polypeptides such as phospholipase A (PLA) and melittin, which have been shown to exhibit therapeutic benefits, mainly via attenuation of inflammation, neurotoxicity, and nociception. The individual components of bee venom may manifest distinct biological actions and therapeutic potential. In this study, the potential mechanisms of action of PLA and melittin, among different compounds purified from honey bee venom, were evaluated against Parkinson's disease (PD).
View Article and Find Full Text PDFParkinson's disease (PD) is a chronic progressive neurodegenerative movement disorder characterized by the selective loss of dopaminergic neurons within the substantia nigra (SN). While the precise etiology of dopaminergic neuronal demise is elusive, multiple lines of evidence indicate that neuroinflammation is involved in the pathogenesis of PD. We have previously demonstrated that subcutaneous administration of bee venom (BV) phospholipase A (bvPLA) suppresses dopaminergic neuronal cell death in a PD mouse model.
View Article and Find Full Text PDFParkinson's disease (PD) is the second most common neurodegenerative disorder worldwide. Progressive loss of dopaminergic neurons in the substantia nigra (SN) and their synaptic terminal connections in the striatum are main characterizations of PD. Although many efforts have been made to develop therapeutics, no treatment has been proven effective.
View Article and Find Full Text PDFDentritic cell (DC)-based cancer immunotherapy faces challenges in both efficacy and practicality. However, DC-based vaccination requires multiple injections and elaborates ex vivo manipulation, which substantially limits their use. Therefore, we sought to develop a chitosan nanoparticle (CH-NP)-based platform for the next generation of vaccines to bypass the ex vivo manipulation and induce immune responses via active delivery of polyinosinic-polycytidylic acid sodium salt (poly I:C) to target Toll-like receptor 3 (TLR3) in endosomes.
View Article and Find Full Text PDFAlthough cytotoxic chemotherapy is widely used against epithelial ovarian cancer (EOC), adverse side effects and emergence of resistance can limit its utility. Therefore, new drugs with systemic delivery platforms are urgently needed for this disease. In this study, we developed linalool-incorporated nanoparticles (LIN-NP) as a novel anticancer agent.
View Article and Find Full Text PDFStimulus-triggered drug release based on the liposomal drug delivery platform has been studied vigorously to increase drug release at the target site. Although the delivery system has been developed, an effective carrier system is needed to achieve effective therapeutic efficacy. Therefore, we focused on the development of gold cluster bound thermosensitive liposomes (G-TSL), which are capable of triggered drug release when stimulated by external near-infrared (NIR) irradiation in the tumor microenvironment.
View Article and Find Full Text PDFUnlabelled: Drug delivery using thermosensitive liposomes (TSL) has significant potential for tumor drug targeting and can be combined with local hyperthermia to trigger drug release. Although TSL-mediated drug delivery can be effective by itself, we developed doxorubicin (DOX)-containing CO2 bubble-generating TSL (TSL-C) that were found to enhance the antitumor effects of DOX owing to the synergism between burst release of drug and hyperthermia-induced CO2 generation. An ultrasound imaging system was used to monitor hyperthermia-induced CO2 generation in TSL-C and the results revealed that hyperthermia-induced CO2 generation in TSL-C led to increased DOX release compared to that observed for non-CO2-generating TSL.
View Article and Find Full Text PDFBackground: The application of vaccine adjuvants has been vigorously studied for a diverse range of diseases in order to improve immune responses and reduce toxicity. However, most adjuvants have limited uses in clinical practice due to their toxicity.
Methods: Therefore, to reduce health risks associated with the use of such adjuvants, we developed an advanced non-toxic adjuvant utilizing biodegradable chitosan hydrogel (CH-HG) containing ovalbumin (OVA) and granulocyte-macrophage colony-stimulating factor (GM-CSF) as a local antigen delivery system.
Liposome-based drug delivery systems hold great potential for cancer therapy. However, to enhance the localization of payloads, an efficient method of systemic delivery of liposomes to tumor tissues is required. In this study, we developed cationic liposomes composed of polyethylenimine (PEI)-conjugated distearoylglycerophosphoethanolamine (DSPE) as an enhanced local drug delivery system.
View Article and Find Full Text PDF