Publications by authors named "Hasvold L"

The BET family of proteins consists of BRD2, BRD3, BRD4, and BRDt. Each protein contains two distinct bromodomains (BD1 and BD2). BET family bromodomain inhibitors under clinical development for oncology bind to each of the eight bromodomains with similar affinities.

View Article and Find Full Text PDF

Proteins of the bromodomain and extra-terminal (BET) domain family are epigenetic readers that bind acetylated histones through their bromodomains to regulate gene transcription. Dual-bromodomain BET inhibitors (DbBi) that bind with similar affinities to the first (BD1) and second (BD2) bromodomains of BRD2, BRD3, BRD4 and BRDt have displayed modest clinical activity in monotherapy cancer trials. A reduced number of thrombocytes in the blood (thrombocytopenia) as well as symptoms of gastrointestinal toxicity are dose-limiting adverse events for some types of DbBi.

View Article and Find Full Text PDF

Objective: In patients with myocardial infarction (MI), risk factors for bleeding and ischaemic events tend to overlap, but the combined effects of these factors have scarcely been studied in contemporary real-world settings. We aimed to assess the combined associations of established risk factors using nationwide registries.

Methods: Using the Swedish Web-system for Enhancement and Development of Evidence-based care in Heart disease Evaluated According to Recommended Therapies registry, patients with invasively managed MI in 2006-2014 were included.

View Article and Find Full Text PDF

Objectives: To compare short-term cardiovascular (CV) outcome in type 2 diabetes (T2D) patients without ischaemic heart disease (IHD), with IHD but no prior myocardial infarction (MI), and those with prior MI; and assess the impact on risk of age when initiating first-time glucose-lowering drug (GLD).

Design: Cohort study linking morbidity, mortality and medication data from Swedish national registries.

Participants: First-time users of GLD during 2007-2016.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to analyze the healthcare costs related to hyperkalaemia (HK) among patients with chronic kidney disease (CKD), heart failure (HF), or diabetes in Northern Denmark.
  • It involved a cohort of patients with HK and a matched group without HK, comparing healthcare costs in the six months before and after the HK event.
  • The findings revealed that patients with CKD, HF, and diabetes who experienced HK incurred significantly higher costs post-event, indicating that HK events lead to substantial financial implications for these high-risk groups.
View Article and Find Full Text PDF

Novel conformationally constrained BET bromodomain inhibitors have been developed. These inhibitors were optimized in two similar, yet distinct chemical series, the 6-methyl-1H-pyrrolo[2,3-c]pyridin-7(6H)-ones (A) and the 1-methyl-1H-pyrrolo[2,3-c]pyridin-7(6H)-ones (B). Each series demonstrated excellent activity in binding and cellular assays, and lead compounds from each series demonstrated significant efficacy in in vivo tumor xenograft models.

View Article and Find Full Text PDF

The development of bromodomain and extraterminal domain (BET) bromodomain inhibitors and their examination in clinical studies, particularly in oncology settings, has garnered substantial recent interest. An effort to generate novel BET bromodomain inhibitors with excellent potency and drug metabolism and pharmacokinetics (DMPK) properties was initiated based upon elaboration of a simple pyridone core. Efforts to develop a bidentate interaction with a critical asparagine residue resulted in the incorporation of a pyrrolopyridone core, which improved potency by 9-19-fold.

View Article and Find Full Text PDF

ABBV-075 is a potent and selective BET family bromodomain inhibitor that recently entered phase I clinical trials. Comprehensive preclinical characterization of ABBV-075 demonstrated broad activity across cell lines and tumor models, representing a variety of hematologic malignancies and solid tumor indications. In most cancer cell lines derived from solid tumors, ABBV-075 triggers prominent G cell-cycle arrest without extensive apoptosis.

View Article and Find Full Text PDF

Members of the BET family of bromodomain containing proteins have been identified as potential targets for blocking proliferation in a variety of cancer cell lines. A two-dimensional NMR fragment screen for binders to the bromodomains of BRD4 identified a phenylpyridazinone fragment with a weak binding affinity (1, K = 160 μM). SAR investigation of fragment 1, aided by X-ray structure-based design, enabled the synthesis of potent pyridone and macrocyclic pyridone inhibitors exhibiting single digit nanomolar potency in both biochemical and cell based assays.

View Article and Find Full Text PDF

An NMR fragment screen for binders to the bromodomains of BRD4 identified 2-methyl-3-ketopyrroles 1 and 2. Elaboration of these fragments guided by structure-based design provided lead molecules with significant activity in a mouse tumor model. Further modifications to the methylpyrrole core provided compounds with improved properties and enhanced activity in a mouse model of multiple myeloma.

View Article and Find Full Text PDF

Myeloid cell leukemia 1 (MCL-1) is a BCL-2 family protein that has been implicated in the progression and survival of multiple tumor types. Herein we report a series of MCL-1 inhibitors that emanated from a high throughput screening (HTS) hit and progressed via iterative cycles of structure-guided design. Advanced compounds from this series exhibited subnanomolar affinity for MCL-1 and excellent selectivity over other BCL-2 family proteins as well as multiple kinases and GPCRs.

View Article and Find Full Text PDF

A-1155463, a highly potent and selective BCL-XL inhibitor, was discovered through nuclear magnetic resonance (NMR) fragment screening and structure-based design. This compound is substantially more potent against BCL-XL-dependent cell lines relative to our recently reported inhibitor, WEHI-539, while possessing none of its inherent pharmaceutical liabilities. A-1155463 caused a mechanism-based and reversible thrombocytopenia in mice and inhibited H146 small cell lung cancer xenograft tumor growth in vivo following multiple doses.

View Article and Find Full Text PDF

Differences in clinical effectiveness between angiotensin-converting enzyme inhibitors (ACEis) and angiotensin receptor blockers (ARBs) in the primary treatment of hypertension are unknown. The aim of this retrospective cohort study was to assess the prevention of type 2 diabetes and cardiovascular disease (CVD) in patients treated with ARBs or ACEis. Patients initiated on enalapril or candesartan treatment in 71 Swedish primary care centers between 1999 and 2007 were included.

View Article and Find Full Text PDF

Because of the promise of BCL-2 antagonists in combating chronic lymphocytic leukemia (CLL) and non-Hodgkin's lymphoma (NHL), interest in additional selective antagonists of antiapoptotic proteins has grown. Beginning with a series of selective, potent BCL-XL antagonists containing an undesirable hydrazone functionality, in silico design and X-ray crystallography were utilized to develop alternative scaffolds that retained the selectivity and potency of the starting compounds.

View Article and Find Full Text PDF

Purpose: The transcription factor c-Myc (or "Myc") is a master regulator of pathways driving cell growth and proliferation. MYC is deregulated in many human cancers, making its downstream target genes attractive candidates for drug development. We report the unexpected finding that B-cell lymphomas from mice and patients exhibit a striking correlation between high levels of Myc and checkpoint kinase 1 (Chk1).

View Article and Find Full Text PDF

Pim-1, Pim-2, and Pim-3 are a family of serine/threonine kinases which have been found to be overexpressed in a variety of hematopoietic malignancies and solid tumors. Benzothienopyrimidinones were discovered as a novel class of Pim inhibitors that potently inhibit all three Pim kinases with subnanomolar to low single-digit nanomolar K(i) values and exhibit excellent selectivity against a panel of diverse kinases. Protein crystal structures of the bound Pim-1 complexes of benzothienopyrimidinones 3b (PDB code 3JYA), 6e (PDB code 3JYO), and 12b (PDB code 3JXW) were determined and used to guide SAR studies.

View Article and Find Full Text PDF

The synthesis and structure-activity relationships (SAR) of Chk1 inhibitors based on a 5,10-dihydro-dibenzo[b,e][1,4]diazepin-11-one core are described. Specifically, an exploration of the 7 and 8 positions on this previously disclosed core afforded compounds with improved enzymatic and cellular potency.

View Article and Find Full Text PDF

A novel series of 5,10-dihydro-dibenzo[b,e][1,4]diazepin-11-ones have been synthesized as potent and selective checkpoint kinase 1 (Chk1) inhibitors via structure-based design. Aided by protein X-ray crystallography, medicinal chemistry efforts led to the identification of compound 46d, with potent enzymatic activity against Chk1 kinase. While maintaining a low cytotoxicity of its own, compound 46d exhibited a strong ability to abrogate G2 arrest and increased the cytotoxicity of camptothecin by 19-fold against SW620 cells.

View Article and Find Full Text PDF

Based on the X-ray crystallography of our lead compound 1-(5-chloro-2,4-dimethoxyphenyl)-3-(5-cyanopyrazin-2-yl)urea in the checkpoint kinase 1 (Chk1) enzyme, we modified R4, and to a lesser extent, R2, and R5 of the phenyl ring, and made a variety of N-aryl-N'-pyrazinylurea Chk1 inhibitors. Enzymatic activity less than 20 nM was observed in 15 of 41 compounds. Compound 8i provided the best overall results in the cellular assays as it abrogated doxorubicin-induced cell cycle arrest (IC50=1.

View Article and Find Full Text PDF

A non-methionine FT inhibitor lead structure (1) was designed through computer modeling of the peptidomimetic FT inhibitor ABT839. Optimization of this lead resulted in compounds 2e and 2g, with FT IC(50) values of 1.3 and 1.

View Article and Find Full Text PDF

As a part of our efforts to identify potent inhibitors of farnesyltransferase (FTase), modification of the structure of tipifarnib through structure-based design was undertaken by replacing the 2-quinolones with 4-quinolones and pyridones, and subsequent relocation of the D-ring to the N-methyl group on the imidazole ring. This study has yielded a novel series of potent and selective FTase inhibitors. The X-ray structure of tipifarnib (1) in complex with FTase was described.

View Article and Find Full Text PDF

Farnesyltransferase inhibitors (FTIs) have been developed as potential anti-cancer agents due to their efficacy in blocking malignant growth in a variety of murine models of human tumors. To that end, we have developed a series of pyridone farnesyltransferase inhibitors with potent in vitro and cellular activity. The synthesis, SAR and biological properties of these compounds will be discussed.

View Article and Find Full Text PDF

A pyridyl moiety was introduced into a previously developed series of farnesyltransferase inhibitors containing imidazole and cyanophenyl (such as 4), resulting in potent inhibitors with improved pharmacokinetics.

View Article and Find Full Text PDF

Inhibitors of farnesyltransferase are effective against a variety of tumors in mouse models of cancer. Clinical trials to evaluate these agents in humans are ongoing. In our effort to develop new farnesyltransferase inhibitors, we have discovered bioavailable aryl tetrahydropyridines that are potent in cell culture.

View Article and Find Full Text PDF