Publications by authors named "Hassinger E"

The unconventional superconductor CeRh_{2}As_{2} (critical temperature T_{c}≈0.4  K) displays an exceptionally rare magnetic-field-induced transition between two distinct superconducting (SC) phases, proposed to be states of even and odd parity of the SC order parameter, which are enabled by a locally noncentrosymmetric structure. The superconductivity is preceded by a phase transition of unknown origin at T_{0}=0.

View Article and Find Full Text PDF

In many physical situations in which many-body assemblies exist at temperature , a characteristic quantum-mechanical time scale of approximately [Formula: see text] can be identified in both theory and experiment, leading to speculation that it may be the shortest meaningful time in such circumstances. This behavior can be investigated by probing the scattering rate of electrons in a broad class of materials often referred to as "strongly correlated metals". It is clear that in some cases only electron-electron scattering can be its cause, while in others it arises from high-temperature scattering of electrons from quantized lattice vibrations, i.

View Article and Find Full Text PDF

Recently, a superconducting (SC) transition from low-field (LF) to high-field (HF) SC states was reported in CeRh_{2}As_{2}, indicating the existence of multiple SC states. It has been theoretically noted that the existence of two Ce sites in the unit cell, the so-called sublattice degrees of freedom owing to the local inversion symmetry breaking at the Ce sites, can lead to the appearance of multiple SC phases even under an interaction inducing spin-singlet superconductivity. CeRh_{2}As_{2} is considered as the first example of multiple SC phases owing to this sublattice degree of freedom.

View Article and Find Full Text PDF

Spatial inversion symmetry in crystal structures is closely related to the superconducting (SC) and magnetic properties of materials. Recently, several theoretical proposals that predict various interesting phenomena caused by the breaking of the local inversion symmetry have been presented. However, experimental validation has not yet progressed owing to the lack of model materials.

View Article and Find Full Text PDF

Materials with multiple superconducting phases are rare. Here, we report the discovery of two-phase unconventional superconductivity in CeRhAs Using thermodynamic probes, we establish that the superconducting critical field of its high-field phase is as high as 14 tesla, even though the transition temperature is only 0.26 kelvin.

View Article and Find Full Text PDF

Although crystals of strongly correlated metals exhibit a diverse set of electronic ground states, few approaches exist for spatially modulating their properties. In this study, we demonstrate disorder-free control, on the micrometer scale, over the superconducting state in samples of the heavy-fermion superconductor CeIrIn We pattern crystals by focused ion beam milling to tailor the boundary conditions for the elastic deformation upon thermal contraction during cooling. The resulting nonuniform strain fields induce complex patterns of superconductivity, owing to the strong dependence of the transition temperature on the strength and direction of strain.

View Article and Find Full Text PDF

The influence of Al incorporation on the heavy fermion superconductor UBe was investigated to explain the sample dependence of physical properties. Clear evidence for incorporated Al in flux-grown UBe single crystals is presented by results from X-ray diffraction, nuclear magnetic resonance and X-ray spectroscopy. The increase of the lattice parameter and the concomitant change of the superconducting properties are caused by substitution of Be in the compound by 1-2 at.

View Article and Find Full Text PDF

Torque magnetometry is a key method to measure the magnetic anisotropy and quantum oscillations in metals. In order to resolve quantum oscillations in sub-millimeter sized samples, piezo-electric micro-cantilevers were introduced. In the case of strongly correlated metals with large Fermi surfaces and high cyclotron masses, magnetic torque resolving powers in excess of 10 are required at temperatures well below 1 K and magnetic fields beyond 10 T.

View Article and Find Full Text PDF
Article Synopsis
  • Tantalum arsenide (TaAs) is a noncentrosymmetric monopnictide that shows promise as a Weyl semimetal, allowing for the study of chiral massless quasiparticles known as Weyl fermions.
  • The research involved detailed measurements of TaAs's bulk Fermi surface topology using advanced techniques like angle-dependent Shubnikov-de Haas and de Haas-van Alphen measurements, revealing three different types of Fermi surface pockets.
  • TaAs stands out among similar materials as it has the Fermi energy positioned close to Weyl points, which is essential for generating chiral quasiparticles, leading to potential discoveries in novel quantum phenomena.
View Article and Find Full Text PDF

Weyl semimetals (WSMs) are topological quantum states wherein the electronic bands disperse linearly around pairs of nodes with fixed chirality, the Weyl points. In WSMs, nonorthogonal electric and magnetic fields induce an exotic phenomenon known as the chiral anomaly, resulting in an unconventional negative longitudinal magnetoresistance, the chiral-magnetic effect. However, it remains an open question to which extent this effect survives when chirality is not well-defined.

View Article and Find Full Text PDF

Understanding the role of electron correlations in strong spin-orbit transition-metal oxides is key to the realization of numerous exotic phases including spin-orbit-assisted Mott insulators, correlated topological solids, and prospective new high-temperature superconductors. To date, most attention has been focused on the 5d iridium-based oxides. We instead consider the Pt-based delafossite oxide PtCoO2.

View Article and Find Full Text PDF

In underdoped cuprate superconductors, the Fermi surface undergoes a reconstruction that produces a small electron pocket, but whether there is another, as yet, undetected portion to the Fermi surface is unknown. Establishing the complete topology of the Fermi surface is key to identifying the mechanism responsible for its reconstruction. Here we report evidence for a second Fermi pocket in underdoped YBa2Cu3Oy, detected as a small quantum oscillation frequency in the thermoelectric response and in the c-axis resistance.

View Article and Find Full Text PDF

The origin of pairing in a superconductor resides in the underlying normal state. In the cuprate high-temperature superconductor YBa(2)Cu(3)O(y) (YBCO), application of a magnetic field to suppress superconductivity reveals a ground state that appears to break the translational symmetry of the lattice, pointing to some density-wave order. Here we use a comparative study of thermoelectric transport in the cuprates YBCO and La(1.

View Article and Find Full Text PDF

We succeeded in growing high quality single crystals of URu(2)Si(2) and performed thermal expansion measurements under pressure. Applying a magnetic field along the [001] direction in the tetragonal structure, the so-called hidden-order phase reappears after the suppression of the antiferromagnetic phase above the critical pressure P(x). We determined the pressure-temperature-field phase diagram for the paramagnetic, hidden-order and antiferromagnetic states for the [Formula: see text] direction.

View Article and Find Full Text PDF

Shubnikov-de Haas measurements of high quality URu2Si2 single crystals reveal two previously unobserved Fermi surface branches in the so-called hidden order phase. Therefore, about 55% of the enhanced mass is now detected. Under pressure in the antiferromagnetic state, the Shubnikov-de Haas frequencies for magnetic fields applied along the crystalline c axis show little change compared with the zero pressure data.

View Article and Find Full Text PDF

This research examined the prevalence of second offices and hospital consulting practices of physicians in Missouri, the characteristics of physicians participating in such practices, the change in availability of services through these practices, the characteristics of counties and hospitals involved, and the practice organization of participating physicians. The assessment of the factors was conducted within the conceptual framework of community and physician characteristics, practice form and organization, and health system resources. In 1993, 64 of the 93 nonmetropolitan counties in Missouri gained, on average, 1.

View Article and Find Full Text PDF

The study examines changes in location of osteopathic and medical doctors in a 20-county area of rural Missouri over a 14-year period. Losses of osteopathic physicians were greater than medical doctors. However, there was a convergence over the 14-year period in background characteristics of the two types of physicians.

View Article and Find Full Text PDF