Core needle biopsy is a part of the histopathological process, which is required for cancerous tissue examination. The most common method to guide the needle inside of the body is ultrasound screening, which in greater part is also the only guidance method. Ultrasound screening requires user experience.
View Article and Find Full Text PDFPlant Biol (Stuttg)
March 2011
Metallothioneins (MTs) are ubiquitous cysteine-rich proteins present in plants, animals, fungi and cyanobacteria. In plants, MTs are suggested to be involved in metal tolerance or homeostasis, as they are able to bind metal ions through the thiol groups of their cysteine residues. Recent reports show that MTs are also involved in the scavenging of reactive oxygen species (ROS).
View Article and Find Full Text PDFVolatile organic compounds (VOCs) are expected to have an important role in plant adaptation to high temperatures. The impacts of increasing night-time temperature on daytime terpenoid emissions and related gene expression in silver birch (Betula pendula) and European aspen (Populus tremula) clones were studied. The plants were grown under five different night-time temperatures (6, 10, 14, 18, and 22 degrees C) while daytime temperature was kept at a constant 22 degrees C.
View Article and Find Full Text PDFMetal hyperaccumulator plants have previously been characterized by transcriptomics, but reports on other profiling techniques are scarce. Protein profiles of Thlaspi caerulescens accessions La Calamine (LC) and Lellingen (LE) and lines derived from an LCxLE cross were examined here to determine the co-segregation of protein expression with the level of zinc (Zn) hyperaccumulation. Although hydrophobic proteins such as membrane transporters are not disclosed, this approach has the potential to reveal other proteins important for the Zn hyperaccumulation trait.
View Article and Find Full Text PDFThis paper investigates differences in gene expression among the two Thlaspi caerulescens ecotypes La Calamine (LC) and Lellingen (LE) that have been shown to differ in metal tolerance and metal uptake. LC originates from a metalliferous soil and tolerates higher metal concentrations than LE which originates from a non-metalliferous soil. The two ecotypes were treated with different levels of zinc in solution culture, and differences in gene expression were assessed through application of a cDNA microarray consisting of 1,700 root and 2,700 shoot cDNAs.
View Article and Find Full Text PDFMetal uptake and its effect on foliar metallothionein 2b (MT2b) mRNA levels were studied in hybrid aspen (Populus tremulaxtremuloides) in field conditions. The trees were planted on a site contaminated with several metals, including cadmium (mean 5.1 mgkg(-1)), chromium (80 mgkg(-1)), copper (180 mgkg(-1)), nickel (81 mgkg(-1)), vanadium (240 mgkg(-1)) and zinc (520 mgkg(-1)).
View Article and Find Full Text PDFTo study the role of metallothioneins (MTs) in Zn accumulation, the expression of TcMT2a, TcMT2b, and TcMT3 was analysed in three accessions and 15 F(3) families of two inter-accession crosses of the Cd/Zn hyperaccumulator Thlaspi caerulescens, with different degrees of Zn accumulation. The highest expression levels were found in the shoots of a superior metal-accumulating calamine accession from St Laurent le Minier, with >10-fold TcMT3 expression compared with another calamine accession and a non-metallicolous accession. Moreover, F(3) sibling lines from the inter-accession crosses that harboured the MT2a or MT3 allele from St Laurent le Minier had higher expression levels.
View Article and Find Full Text PDFSuppression subtractive hybridization (SSH) was used to isolate genes differentially expressed following exposure to copper (Cu) in a naturally selected Cu-tolerant birch (Betula pendula Roth.) clone originating from a disused lead/zinc smelter. Of the 352 cDNA fragments initially isolated, 108 were up-regulated by Cu, of which 55 showed over twofold induction by macroarray analysis.
View Article and Find Full Text PDFSeveral populations with different metal tolerance, uptake and root-to-shoot transport are known for the metal hyperaccumulator plant Thlaspi caerulescens. In this study, genes differentially expressed under various Zn exposures were identified from the shoots of two T. caerulescens accessions (calaminous and non-calaminous) using fluorescent differential display RT-PCR.
View Article and Find Full Text PDFThlaspi caerulescens is increasingly acknowledged as one of the best models for studying metal hyperaccumulation in plants. In order to study the mechanisms underlying metal hyperaccumulation, we used proteomic profiling to identify differences in protein intensities among three T. caerulescens accessions with pronounced differences in tolerance, uptake and root to shoot translocation of Zn and Cd.
View Article and Find Full Text PDFZ Naturforsch C J Biosci
June 2005
Thlaspi caerulescens is a well-studied metal-hyperaccumulator of zinc, cadmium and nickel, belonging to the Brassicaceae family. Moreover it is one of the few hyperaccumulators that occur on different metalliferous soil types, as well as on nonmetalliferous soils. We are interested in the development of systems to improve phytoremediation of metal contaminated soils through improved metal-accumulation.
View Article and Find Full Text PDF• Expression of all known and newly found pathogenesis-related PR-10 proteins (PR-10a, b, c, d, e) was analysed from Cu-sensitive and -tolerant birch clones to find out whether they follow the same expression pattern. The relationship of PR-10 proteins, particularly PR-10c, to oxidative stress caused by metals or ozone was studied in tolerant and sensitive birch clones to find out possible linkages to tolerance. • Antibody developed to PR-10c was used in Western blot analysis.
View Article and Find Full Text PDFSilene vulgaris (Moench) Garcke has evolved populations with extremely high levels of copper tolerance. To evaluate the role of metallothioneins (MTs) in copper tolerance in S. vulgaris, we screened a cDNA library derived from a highly copper-tolerant population using Arabidopsis-based MT probes and identified an MT2b-like gene.
View Article and Find Full Text PDF