Given the high impact of traditional mining, the recovery of rare earth elements (REEs) from hazardous waste materials could become an option for the future in accordance with the principles of the circular economy. In this work, the technical feasibility of REEs recovery from metal mine tailings has been explored using electrokinetic-assisted phytoremediation with ryegrass (Lolium perenne L.).
View Article and Find Full Text PDFThe screening of new effective metal hyperaccumulators is essential for the development of profitable phytoremediation projects in highly degraded environments such as mining areas. The goal of this research was to analyze the phytoextraction potential of the native plant Spergularia rubra to decontaminate and eventually recover metals (phytomining) from the mine tailings (belonging to an abandoned Pb/Zn Spanish mine) in which it grows spontaneously. To do so, the ability of this plant species to accumulate metals was evaluated both under natural conditions and through simple and electrokinetically assisted phytoextraction tests using alternating current and different combinations of voltage gradient (1/2 V cm) and application time (6/12 h per day).
View Article and Find Full Text PDFThe aim of this study was to study and model the bioleaching of abandoned mine tailings at different pulp densities 1-20% w/v by using an autochthonous mesophilic microbial culture. Because of the importance of the ferrous-iron oxidation as sub-process on the bioleaching of sulphide mineral ores, the ferrous-iron oxidation process by the autochthonous microbial culture was studied at different ferrous-iron concentrations. A mathematical model fitted to the experimental results and the main kinetic and stoichiometric parameters were determined, being the most relevant the maximum ferrous-iron oxidation rate 5.
View Article and Find Full Text PDF