Materials (Basel)
October 2024
This study focuses on the ionic contribution by a chiral dopant added into a nematic host for preparing cholesteric liquid crystals (CLCs). Chiral structures were designated by individually incorporating two enantiomers, R5011 and S5011, into the nematic E44 to construct right- and left-handed CLCs, respectively. Characterized by the space-charge polarization, the dielectric spectra of the CLCs were investigated in the low-frequency regime, where ≤ 1 kHz.
View Article and Find Full Text PDFConventional liquid crystal (LC)-based biosensors utilize predominantly thermotropic LCs as the signal-transducing media, which are less environmentally sustainable compared with lyotropic counterparts. In this study, the nematic phase of the anionic azo dye sunset yellow (SSY), a type of lyotropic chromonic liquid crystals (LCLCs), was employed in the optical and electrical biosensing of bovine serum albumin (BSA) and the cancer biomarker CA125. The optical response observed under a polarizing optical microscope was quantified by image analysis, taking advantage of the specific absorption of SSY.
View Article and Find Full Text PDFCompared with thermotropic liquid crystals (LCs), the biosensing potential of lyotropic chromonic liquid crystals (LCLCs), which are more biocompatible because of their hydrophilic nature, has scarcely been investigated. In this study, the nematic phase, a mesophase shared by both thermotropic LCs and LCLCs, of disodium cromoglycate (DSCG) was employed as the sensing mesogen in the LCLC-based biosensor. The biosensing platform was constructed so that the LCLC was homogeneously aligned by the planar anchoring strength of polyimide, but was disrupted in the presence of proteins such as bovine serum albumin (BSA) or the cancer biomarker CA125 captured by the anti-CA125 antibody, with the level of disturbance (and the optical signal thus produced) predominated by the amount of the analyte.
View Article and Find Full Text PDFAn optical and dielectric biosensor based on a liquid crystal (LC)-photopolymer composite was established in this study for the detection and quantitation of bovine serum albumin (BSA). When the nematic LC E7 was doped with 4-wt.% NOA65, a photo-curable prepolymer, and photopolymerized by UV irradiation at 20 mW/cm for 300 s, the limit of detection determined by image analysis of the LC optical texture and dielectric spectroscopic measurements was 3400 and 88 pg/mL for BSA, respectively, which were lower than those detected with E7 alone (10 μg/mL BSA).
View Article and Find Full Text PDF