Publications by authors named "Hassanein I Khalaf"

The aluminum strength-to-weight ratio has become a highly significant factor in industrial applications. Placing stiffening ribs along the surface can significantly improve the panel's resistance to bending and compression in aluminum alloys. This study used single-point incremental forming (SPIF) to fabricate stiffening ribs for 1 mm and 3 mm thick aluminum alloy EN AW-2024-T3 sheets.

View Article and Find Full Text PDF

Studying roughness parameters and the topography of stiffening ribs in composite sandwich structures is important for understanding these materials' surface quality and mechanical properties. The roughness parameters describe the micro-geometry of the surface, including the average height deviation, roughness depth, and waviness. The topography of the surface refers to the spatial arrangement and distribution of features such as bumps, ridges, and valleys.

View Article and Find Full Text PDF

Friction stir welding (FSW) of polymeric materials has recently attracted significant attention. Herein, we present the effect of the tool pin profile on the FSW of high-density polyethylene (HDPE) joints through joint experimental analysis and thermomechanical simulations. For analysis of pin profile effects on the thermomechanical properties of HDPE joints, frustum (FPT), cubic (CPT), and triangular (TPT) pin shapes were selected in this study.

View Article and Find Full Text PDF

In this study, the effects of the traverse and rotational velocities of the noncontact shoulder tool on the heat generation and heated flux during the friction stir joining of high-density polyamide 6 (PA6) polymer were investigated. The computational fluid dynamics (CFD) method was employed to simulate the thermomechanical phenomena during the friction stir joining (FSJ) process of PA6. A developed model was used to consider the void formation and thermochemical properties of PA6.

View Article and Find Full Text PDF

This article aims to study water-cooling effects on residual stress friction stir welding (FSW) of AA6068-T6 aluminum alloy. For this reason, the FSW and submerged FSW processes are simulated by computational fluid dynamic (CFD) method to study heat generation. The increment hole drilling technique was used to measure the residual stress of welded samples.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionp6lggh11dcmmf7qfe694hqjp0bipg3ud): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once