Protease-containing ABC transporters (PCATs) couple the energy of ATP hydrolysis to the processing and export of diverse cargo proteins across cell membranes to mediate antimicrobial resistance and quorum sensing. Here, we combine biochemical analysis, single particle cryoEM, and DEER spectroscopy in lipid bilayers along with computational analysis to illuminate the structural and energetic underpinnings of coupled cargo protein export. Our integrated investigation uncovers competitive interplay between nucleotides and cargo protein binding that ensures the latter's orderly processing and subsequent transport.
View Article and Find Full Text PDFProtein thermodynamics is intimately tied to biological function and can enable processes such as signal transduction, enzyme catalysis, and molecular recognition. The relative free energies of conformations that contribute to these functional equilibria evolved for the physiology of the organism. Despite the importance of these equilibria for understanding biological function and developing treatments for disease, computational and experimental methods capable of quantifying the energetic determinants of these equilibria are limited to systems of modest size.
View Article and Find Full Text PDFHere we used cryo-electron microscopy (cryo-EM), double electron-electron resonance spectroscopy (DEER), and molecular dynamics (MD) simulations, to capture and characterize ATP- and substrate-bound inward-facing (IF) and occluded (OC) conformational states of the heterodimeric ATP binding cassette (ABC) multidrug exporter BmrCD in lipid nanodiscs. Supported by DEER analysis, the structures reveal that ATP-powered isomerization entails changes in the relative symmetry of the BmrC and BmrD subunits that propagates from the transmembrane domain to the nucleotide binding domain. The structures uncover asymmetric substrate and Mg binding which we hypothesize are required for triggering ATP hydrolysis preferentially in one of the nucleotide-binding sites.
View Article and Find Full Text PDFA coordinated oxidative stress response, partly triggered by the transcription factor Nrf2, protects cells from the continual production of reactive oxygen species. Left unbuffered, reactive oxygen species can lead to protein aggregation that has been implicated in a spectrum of diseases such as cataract of the ocular lens and myopathy of the heart. While proteostasis is maintained by diverse families of heat shock proteins, the interplay between the oxidative and proteostatic stress responses in the lens and heart has not been investigated.
View Article and Find Full Text PDFCaveolin-1 (CAV1) is a membrane-sculpting protein that oligomerizes to generate flask-shaped invaginations of the plasma membrane known as caveolae. Mutations in CAV1 have been linked to multiple diseases in humans. Such mutations often interfere with oligomerization and the intracellular trafficking processes required for successful caveolae assembly, but the molecular mechanisms underlying these defects have not been structurally explained.
View Article and Find Full Text PDFAlphaFold2 (AF2) has revolutionized the field of protein structural prediction. Here, we test its ability to predict the tertiary and quaternary structure of a previously undescribed scaffold with new folds and unusual architecture, the monotopic membrane protein caveolin-1 (CAV1). CAV1 assembles into a disc-shaped oligomer composed of 11 symmetrically arranged protomers, each assuming an identical new fold, and contains the largest parallel β-barrel known to exist in nature.
View Article and Find Full Text PDFAlthough mutations in have long been known to cause autosomal recessive Weill-Marchesani Syndrome which is characterized by short stature and ocular abnormalities, more recent work has shown that certain mutations in cause glaucoma in dogs. In humans, glaucoma is the leading cause of irreversible vision loss that affects tens of millions of people world-wide. Vision loss in glaucoma is a result of neurodegeneration of retinal ganglion cells that form the inner-most layer of the retina and whose axons form the optic nerve which relays visual information to the brain.
View Article and Find Full Text PDFThe Amino Acid-Polyamine-Organocation (APC) transporter GadC contributes to the survival of pathogenic bacteria under extreme acid stress by exchanging extracellular glutamate for intracellular γ-aminobutyric acid (GABA). Its structure, determined in an inward-facing conformation at alkaline pH, consists of the canonical LeuT-fold with a conserved five-helix inverted repeat, thereby resembling functionally divergent transporters such as the serotonin transporter SERT and the glucose-sodium symporter SGLT1. However, despite this structural similarity, it is unclear if the conformational dynamics of antiporters such as GadC follow the blueprint of these or other LeuT-fold transporters.
View Article and Find Full Text PDFEquilibrium fluctuations and triggered conformational changes often underlie the functional cycles of membrane proteins. For example, transporters mediate the passage of molecules across cell membranes by alternating between inward- and outward-facing states, while receptors undergo intracellular structural rearrangements that initiate signaling cascades. Although the conformational plasticity of these proteins has historically posed a challenge for traditional protein structure prediction pipelines, the recent success of AlphaFold2 (AF2) in CASP14 culminated in the modeling of a transporter in multiple conformations to high accuracy.
View Article and Find Full Text PDFG6PC2 encodes a glucose-6-phosphatase (G6Pase) catalytic subunit that modulates the sensitivity of insulin secretion to glucose and thereby regulates fasting blood glucose (FBG). A common single-nucleotide polymorphism (SNP) in G6PC2, rs560887 is an important determinant of human FBG variability. This SNP has a subtle effect on G6PC2 RNA splicing, which raises the question as to whether nonsynonymous SNPs with a major impact on G6PC2 stability or enzyme activity might have a broader disease/metabolic impact.
View Article and Find Full Text PDFSubstrate efflux by ATP-binding cassette (ABC) transporters, which play a major role in multidrug resistance, entails the ATP-powered interconversion between transporter intermediates. Despite recent progress in structure elucidation, a number of intermediates have yet to be visualized and mechanistically interpreted. Here, we combine cryogenic-electron microscopy (cryo-EM), double electron-electron resonance spectroscopy and molecular dynamics simulations to profile a previously unobserved intermediate of BmrCD, a heterodimeric multidrug ABC exporter from Bacillus subtilis.
View Article and Find Full Text PDFDistance distribution information obtained by pulsed dipolar EPR spectroscopy provides an important contribution to many studies in structural biology. Increasingly, such information is used in integrative structural modeling, where it delivers unique restraints on the width of conformational ensembles. In order to ensure reliability of the structural models and of biological conclusions, we herein define quality standards for sample preparation and characterization, for measurements of distributed dipole-dipole couplings between paramagnetic labels, for conversion of the primary time-domain data into distance distributions, for interpreting these distributions, and for reporting results.
View Article and Find Full Text PDFThe potential of spin labeling to reveal the dynamic dimension of macromolecules has been recognized since the dawn of the methodology in the 1960s. However, it was the development of pulsed electron paramagnetic resonance spectroscopy to detect dipolar coupling between spin labels and the availability of turnkey instrumentation in the 21st century that realized the full promise of spin labeling. Double electron-electron resonance (DEER) spectroscopy has seen widespread applications to channels, transporters, and receptors.
View Article and Find Full Text PDFWe describe an approach for integrating distance restraints from Double Electron-Electron Resonance (DEER) spectroscopy into Rosetta with the purpose of modeling alternative protein conformations from an initial experimental structure. Fundamental to this approach is a multilateration algorithm that harnesses sets of interconnected spin label pairs to identify optimal rotamer ensembles at each residue that fit the DEER decay in the time domain. Benchmarked relative to data analysis packages, the algorithm yields comparable distance distributions with the advantage that fitting the DEER decay and rotamer ensemble optimization are coupled.
View Article and Find Full Text PDFParkinson disease (PD) is a progressive, neurodegenerative disorder affecting over 6.1 million people worldwide. Although the cause of PD remains unclear, studies of highly penetrant mutations identified in early-onset familial parkinsonism have contributed to our understanding of the molecular mechanisms underlying disease pathology.
View Article and Find Full Text PDFAs part of the CASP competition, the protein structure prediction algorithm AlphaFold2 generated multiple models of the proton/drug antiporter LmrP. Previous distance restraints from double electron-electron resonance spectroscopy, a technique which reports distance distributions between spin labels attached to proteins, suggest that one of the lower-ranked models may have captured a conformation that has so far eluded experimental structure determination.
View Article and Find Full Text PDF