Nonadiabatic molecular dynamics (NAMD) has become an essential computational technique for studying the photophysical relaxation of molecular systems after light absorption. These phenomena require approximations that go beyond the Born-Oppenheimer approximation, and the accuracy of the results heavily depends on the electronic structure theory employed. Sophisticated electronic methods, however, make these techniques computationally expensive, even for medium size systems.
View Article and Find Full Text PDFOften, chemical reactions are markedly accelerated in microdroplets compared with the corresponding bulk phase. While identifying the precise causative factors remains challenging, the interfacial electric field (IEF) and partial solvation are the two widely proposed factors, accounting for the acceleration or turning on of many reactions in microdroplets. In sharp contrast, this combined computational and experimental study demonstrates that these two critical factors have a negligible effect on promoting a model Diels-Alder (DA) reaction between cyclopentadiene and acrylonitrile in water microdroplets.
View Article and Find Full Text PDFThe molecular structure of water is dynamic, with intermolecular hydrogen (H) bond interactions being modified by both electronic charge transfer and nuclear quantum effects (NQEs). Electronic charge transfer and NQEs potentially change under acidic or basic conditions, but such details have not been measured. In this work, we developed correlated vibrational spectroscopy, a symmetry-based method that separates interacting from noninteracting molecules in self- and cross-correlation spectra, giving access to previously inaccessible information.
View Article and Find Full Text PDFThe solvent-induced interactions (SIIs) between flexible solutes can be separated into two distinct components: the solvation-induced conformational effect and the joint solvation interaction (JSI). The JSI quantifies the thermodynamic effect of the solvent simultaneously accommodating the solutes, generalizing the typical notion of the hydrophobic interaction. We present a formal definition of the JSI within the framework of the mixture expansion, demonstrate that this definition is equivalent to the SII between rigid solutes, and propose a method, partially connected molecular dynamics, which allows one to compute the interaction with existing free energy algorithms.
View Article and Find Full Text PDFOver the last decade, an increasing body of evidence has emerged, supporting the existence of a metastable liquid-liquid critical point in supercooled water whereby two distinct liquid phases of different densities coexist. Analyzing long molecular dynamics simulations performed using deep neural-network force fields trained to accurate quantum mechanical data, we demonstrate that the low-density liquid phase displays a strong propensity toward spontaneous polarization, as witnessed by large and long-lived collective dipole fluctuations. Our findings suggest that the dynamical stability of the low-density phase, and hence the transition from high-density to low-density liquid, is triggered by a collective process involving an accumulation of rotational angular jumps, which could ignite large dipole fluctuations.
View Article and Find Full Text PDFLiquid flow along a charged interface is commonly described by classical continuum theory, which represents the electric double layer by uniformly distributed point charges. The electrophoretic mobility of hydrophobic nanodroplets in water doubles in magnitude when the pH is varied from neutral to mildly basic (pH 7 → 11). Classical continuum theory predicts that this increase in mobility is due to an increased surface charge.
View Article and Find Full Text PDFRecent experimental findings reveal nonconventional fluorescence emission in biological systems devoid of conjugated bonds or aromatic compounds, termed (NAF). This phenomenon is exclusive to aggregated or solid states and remains absent in monomeric solutions. Previous studies focused on small model systems in vacuum show that the carbonyl stretching mode along with strong interaction of short hydrogen bonds (SHBs) remains the primary vibrational mode explaining NAF in these systems.
View Article and Find Full Text PDFKidneys are critical in the clearance and maintenance of active metabolites. One of the medical properties of Salep is treating bladder and kidney inflammation. Due to the widespread use of Salep in traditional medicine and the food industry, and since the effects of Salep on kidney function have not been studied, the present study aimed to investigate the impact of Salep on kidney function.
View Article and Find Full Text PDFThe presence of a second critical point in water has been a topic of intense investigation for the last few decades. The molecular origins underlying this phenomenon are typically rationalized in terms of the competition between local high-density (HD) and low-density (LD) structures. Their identification often requires designing parameters that are subject to human intervention.
View Article and Find Full Text PDFTsetse flies, the sole biological vectors of trypanosomiasis, are predominantly controlled using visual traps and targets baited with attractant lures. Formulation of the lures is informed by compositions of odors from vertebrate hosts preferred by specific tsetse species. However, there are no effective lures for Glossina austeni, a major vector of trypanosomiasis along eastern-coastal region of Africa.
View Article and Find Full Text PDFThe development of accurate water models is of primary importance for molecular simulations. Despite their intrinsic approximations, three-site rigid water models are still ubiquitously used to simulate a variety of molecular systems. Automatic optimization approaches have been recently used to iteratively refine three-site water models to fit macroscopic (average) thermodynamic properties, providing state-of-the-art three-site models that still present some deviations from the liquid water properties.
View Article and Find Full Text PDFChallenging the basis of our chemical intuition, recent experimental evidence reveals the presence of a new type of intrinsic fluorescence in biomolecules that exists even in the absence of aromatic or electronically conjugated chemical compounds. The origin of this phenomenon has remained elusive so far. In the present study, we identify a mechanism underlying this new type of fluorescence in different biological aggregates.
View Article and Find Full Text PDFThe structure of the excess proton in liquid water has been the subject of lively debate on both experimental and theoretical fronts for the last century. Fluctuations of the proton are typically interpreted in terms of limiting states referred to as the Eigen and Zundel species. Here, we put these ideas under the microscope, taking advantage of recent advances in unsupervised learning that use local atomic descriptors to characterize environments of acidic water combined with advanced clustering techniques.
View Article and Find Full Text PDFIn the past decade, there has been a growth in using Zirconium-89 (Zr) as a radionuclide in nuclear medicine for cancer diagnostic imaging and drug discovery processes. Although one of the most popular chelators for Zr, desferrioxamine (DFO) is typically presented as a hexadentate ligand, our work suggests a different scenario. The coordination structure of the Zr-DFO complex has primarily been informed by DFT-based calculations, which typically ignore temperature and therefore entropic and dynamic solvent effects.
View Article and Find Full Text PDFRecent vibrational sum frequency generation spectroscopic experiments [Sengupta et al., J. Phys.
View Article and Find Full Text PDFChem Commun (Camb)
September 2023
The prediction of dipeptide assembly into crystals or gels is challenging. This work reveals the diverging conformational landscape that guides self-organization towards different outcomes. and experimental data enabled deciphering of the electronic circular dichroism (ECD) spectra of self-assembling dipeptides to reveal folded or extended conformers as key players.
View Article and Find Full Text PDFThe microscopic origins of terahertz (THz) vibrational modes in biological systems are an active and open area of current research. Recent experiments [Phys Rev X. , 031061 (2018)] have revealed the presence of a pronounced mode at ∼0.
View Article and Find Full Text PDFAccording to common physical chemistry wisdom, the solvent cavities hosting a solute are tightly sewn around it, practically coinciding with its van der Waals surface. Solvation entropy is primarily determined by the surface and the volume of the cavity while enthalpy is determined by the solute-solvent interaction. In this work, we challenge this picture, demonstrating by molecular dynamics simulations that the cavities surrounding the 20 amino acids deviate significantly from the molecular surface.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2023
Nanoconfinement effects on water dissociation and reactivity remain controversial, despite their importance to understand the aqueous chemistry at interfaces, pores, or aerosols. The pKw in confined environments has been assessed from experiments and simulations in a few specific cases, leading to dissimilar conclusions. Here, with the use of carefully designed ab initio simulations, we demonstrate that the energetics of bulk water dissociation is conserved intact to unexpectedly small length-scales, down to aggregates of only a dozen molecules or pores of widths below 2 nm.
View Article and Find Full Text PDFDouble proton transfers (DPTs) are important for several physical processes, both in molecules and in the condensed phase. While these have been widely studied in biological systems, their study in crystalline environments is rare. In this work, using path integral molecular dynamics simulations, we have studied temperature dependent DPT in molecular crystals of terephthalic acid (TPA).
View Article and Find Full Text PDFWe study the heat transfer between two nanoparticles held at different temperatures that interact through nonreciprocal forces, by combining molecular dynamics simulations with stochastic thermodynamics. Our simulations reveal that it is possible to construct nano refrigerators that generate a net heat transfer from a cold to a hot reservoir at the expense of power exerted by the nonreciprocal forces. Applying concepts from stochastic thermodynamics to a minimal underdamped Langevin model, we derive exact analytical expressions predictions for the fluctuations of work, heat, and efficiency, which reproduce thermodynamic quantities extracted from the molecular dynamics simulations.
View Article and Find Full Text PDFMachine-learning (ML) has become a key workhorse in molecular simulations. Building an ML model in this context involves encoding the information on chemical environments using local atomic descriptors. In this work, we focus on the Smooth Overlap of Atomic Positions (SOAP) and their application in studying the properties of liquid water both in the bulk and at the hydrophobic air-water interface.
View Article and Find Full Text PDFThe emergence and spread of drug resistance of the malaria parasite to the main treatment emphasize the need to develop new antimalarial drugs. In this context, the fatty acid biosynthesis (FAS_II) pathway of the malaria parasite is one of the ideal targets due to its crucial role in parasite survival. In this study, we report the expression and the affinity binding of Fab_I and Fab_Z after exposure to the parasite with different extracts of the .
View Article and Find Full Text PDFUnderstanding the microscopic origins of collective reorientational motions in aqueous systems requires techniques that allow us to reach beyond our chemical imagination. Herein, we elucidate a mechanism using a protocol that automatically detects abrupt motions in reorientational dynamics, showing that large angular jumps in liquid water involve highly cooperative orchestrated motions. Our automatized detection of angular fluctuations, unravels a heterogeneity in the type of angular jumps occurring concertedly in the system.
View Article and Find Full Text PDFOdor from preferred/non-preferred tsetse fly vertebrate hosts have been exploited in R&D of attractants/repellents of the fly for human and livestock protection. Odors from vertebrate hosts of and tsetse flies can facilitate formulation of novel attractants effective against or improvement of existing attractant blends for We compared vertebrate blood meal sources of both fly species at Shimba Hills National Reserve, Kenya, to establish putative preferred host of either species, hence potential source of or specific odors. We trapped sympatric adult flies in 2021 and 2022 using NGU traps/sticky panels baited with POCA, collected their blood meals and characterize the meals using HRM vertebrate 16S rRNA- PCR (for host identification), and compared host profiles using GLM and Fisher's exact tests.
View Article and Find Full Text PDF