In this study, novel adsorbents were synthesized via the activation and magnetization of carbon spheres, graphene, and carbon nanotubes fabricated from plastics to improve their surface area and porosity and facilitate their separation from aqueous solutions. Fourier transform infrared spectroscopy "FTIR", X-ray diffraction "XRD", energy-dispersive X-ray spectroscopy "EDX", transmission electron microscope "TEM", and X-ray photoelectron spectroscopy "XPS" affirmed the successful activation and magnetization of the fabricated materials. Further, surface area analysis showed that the activation and magnetization enhanced the surface area.
View Article and Find Full Text PDFIn this study, we reported sustainable and economical upcycling methods for utilizing plastics such as polyethylene terephthalate (PET) and polypropylene (PP) compiled from the garbage of a residential area as cheap precursors for the production of high-value carbon materials such as graphene (G), carbon spheres (CS), and carbon nanotubes (CNTs) using different thermal treatment techniques. Graphene, carbon spheres, and carbon nanotubes were successfully synthesized from PET, PP, and PET, respectively catalytic pyrolysis. XRD and FTIR analyses were conducted on the three materials, confirming the formation of carbon and their graphitic structure.
View Article and Find Full Text PDFIn this study, a cost-effective powdered Zn l-aspartic acid bio-metal organic framework (Zn l-Asp bio-MOF) was reported as an efficient adsorbent for Direct Red 81 (DR-81) as an anionic organic dye. The prepared bio-MOF was characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission transmission electron microscopy (FETEM), surface area analysis (BET), and thermal gravimetrical analysis (TGA). The resulting bio-MOF has a large surface area (180.
View Article and Find Full Text PDFOrganophosphate-based pesticides, such as diazinon, are among the most toxic organic contaminants to human and environment. Effective removal of diazinon from contaminated water sources is critical. Zirconium Metal-organic frameworks (Zr-MOFs) are promising candidates for the removal of organic contaminants from wastewater.
View Article and Find Full Text PDFAn efficient, environmentally compatible and highly porous, silver surface-modified photocatalytic zinc oxide/cellulose acetate/ polypyrrole ZnO/CA/Ppy hybrid nanofibers matrix was fabricated using an electrospinning technique. Electrospinning parameters such as solution flow rate, applied voltage and the distance between needles to collector were optimized. The optimum homogenous and uniform ZnO/CA/Ppy polymeric composite nanofiber was fabricated through the dispersion of 0.
View Article and Find Full Text PDFThis reported work aims to fabricate an eco-friendly Zr bio-based MOF and assessment its adsorption efficiency towards the cationic and anionic dye pollutants including methylene blue (MB) and direct red 81 (DR-81), respectively. Also, its adsorption tendency for the highly toxic heavy metal of hexavalent chromium (Cr(VI)) was compared with dyes. The adsorption performance of bio-MOF showed that the maximum monolayer adsorption capacities were recorded as 79.
View Article and Find Full Text PDFConsidering the great impact of a material's surface area on adsorption processes, hollow nanotube magnetic zinc oxide with a favorable surface area of 78.39 m²/g was fabricated with the assistance of microwave technology in the presence of poly vinyl alcohol (PVA) as a stabilizing agent followed by sonic precipitation of magnetite nano-particles. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) micrographs identified the nanotubes' morphology in the synthesized material with an average aspect ratio of 3.
View Article and Find Full Text PDFA novel nano-hybrid was synthesized through immobilization of amine-functionalized silica gel nanoparticles with nanomagnetite via a co-precipitation technique. The parameters, such as reagent concentrations, reaction temperature and time, were optimized to accomplish the nano-silica gel chelating matrix. The most proper amine-modified silica gel nanoparticles were immobilized with magnetic nanoparticles.
View Article and Find Full Text PDFAcrylonitrile-Styrene co-polymer was prepared by solution polymerization and fabricated into nanofibers using the electrospinning technique. The nanofiber polarization was enhanced through its surface functionalization with carboxylic acid groups by simple chemical modification. The carboxylic groups' presence was dedicated using the FT-IR technique.
View Article and Find Full Text PDF