Initial responses to tuberculosis treatment are poor predictors of final therapeutic outcomes in drug-susceptible disease, suggesting that treatment success depends on features that are hidden within a small minority of the overall infecting Mycobacterium tuberculosis population. We developed a multitranswell robotic system to perform numerous parallel cultures of genetically barcoded M. tuberculosis exposed to steady-state concentrations of rifampicin to uncover these difficult-to-eliminate minority populations.
View Article and Find Full Text PDFWe have identified a previously unknown mechanism of reversible high-level ethambutol (EMB) resistance in that is caused by a reversible frameshift mutation in the gene. A frameshift mutation in produces the small-colony-variant (SCV) phenotype, but this mutation does not change the MICs of any drug for wild-type However, the same mutation in a low-level EMB-resistant double mutant (MIC = 8 μg/ml) produces an SCV with an EMB MIC of 32 μg/ml. Reversible resistance is indistinguishable from a drug-persistent phenotype, because further culture of these SCV mutants results in rapid reversion of the frameshifts, reestablishing the correct open reading frame, returning the culture to normal colony size, and reversing the EMB MIC back to that (8 μg/ml) of the parental strain.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2019
The length and complexity of tuberculosis (TB) therapy, as well as the propensity of to develop drug resistance, are major barriers to global TB control efforts. is known to have the ability to enter into a drug-tolerant state, which may explain many of these impediments to TB treatment. We have identified a mechanism of genetically encoded but rapidly reversible drug tolerance in caused by transient frameshift mutations in a homopolymeric tract (HT) of 7 cytosines (7C) in the gene.
View Article and Find Full Text PDFTo discover additional genotypic indicators for ethambutol (EMB) resistant M. tuberculosis, we studied polymorphisms in arabinofuranosyl transferase encoding genes aftA (Rv3792), aftB (Rv3805) and aftC (Rv2673) in 38 EMB resistant and 34 EMB susceptible isolates from India and a repository established by the World Health Organization (WHO) Special Programme for Research and Training in Tropical Disease (TDR) by DNA sequencing. The results were correlated with the minimum inhibitory concentration (MIC) of EMB and mutations in embB (Rv3795).
View Article and Find Full Text PDFMutations at embB306 are the most prevalent polymorphisms associated with ethambutol (EMB) resistance, responsible for 40-60% of EMB resistant clinical cases of tuberculosis (TB). The present study analyzed additional mutations associated with EMB resistance in the embB, embC, embA and Rv3806c (ubiA) genes in 29 EMB resistant and 29 EMB susceptible clinical isolates of M. tuberculosis selected from 360 patients with TB.
View Article and Find Full Text PDFEthambutol (EMB) resistance can evolve through a multistep process, and mutations in the ubiA (Rv3806c) gene appear to be responsible for high-level EMB resistance in Mycobacterium tuberculosis We evaluated the prevalence of ubiA and embB (Rv3795) mutations in EMB-resistant strains originating from Africa and South Korea. No differences in embB mutation frequencies were observed between strains from both origins. However, ubiA mutations were present in 45.
View Article and Find Full Text PDFPyrazinamide (PZA) is a prodrug requiring conversion to pyrazinoic acid (POA) by an amidase encoded by pncA for in vitro activity. Mutation of pncA is the most common cause of PZA resistance in clinical isolates. To determine whether the systemic delivery of POA or host-mediated conversion of PZA to POA could circumvent such resistance, we evaluated the efficacy of orally administered and host-derived POA in vivo Dose-ranging plasma and intrapulmonary POA pharmacokinetics and the efficacy of oral POA or PZA treatment against PZA-susceptible tuberculosis were determined in BALB/c and C3HeB/FeJ mice.
View Article and Find Full Text PDFTo study the evolution of drug resistance, we genetically and biochemically characterized Mycobacterium tuberculosis strains selected in vitro for ethambutol resistance. Mutations in decaprenylphosphoryl-β-D-arabinose (DPA) biosynthetic and utilization pathway genes Rv3806c, Rv3792, embB and embC accumulated to produce a wide range of ethambutol minimal inhibitory concentrations (MICs) that depended on mutation type and number. Rv3806c mutations increased DPA synthesis, causing MICs to double from 2 to 4 μg/ml in a wild-type background and to increase from 16 to 32 μg/ml in an embB codon 306 mutant background.
View Article and Find Full Text PDFRifampin resistance in Mycobacterium tuberculosis is largely determined by mutations in an 80-bp rifampin resistance determining region (RRDR) of the rpoB gene. We developed a rapid single-well PCR assay to identify RRDR mutations. The assay uses sloppy molecular beacons to probe an asymmetric PCR of the M.
View Article and Find Full Text PDFCurrent nucleic acid amplification methods to detect Mycobacterium tuberculosis are complex, labor-intensive, and technically challenging. We developed and performed the first analysis of the Cepheid Gene Xpert System's MTB/RIF assay, an integrated hands-free sputum-processing and real-time PCR system with rapid on-demand, near-patient technology, to simultaneously detect M. tuberculosis and rifampin resistance.
View Article and Find Full Text PDFMutations within codon 306 of the Mycobacterium tuberculosis embB gene modestly increase ethambutol (EMB) MICs. To identify other causes of EMB resistance and to identify causes of high-level resistance, we generated EMB-resistant M. tuberculosis isolates in vitro and performed allelic exchange studies of embB codon 406 (embB406) and embB497 mutations.
View Article and Find Full Text PDFRifampin resistance is a key prognostic marker for treatment success in tuberculosis patients. Recently, Wang et al. demonstrated that Rv2629 A191C mutations were present in 99.
View Article and Find Full Text PDFImplicated as a major mechanism of ethambutol (EMB) resistance in clinical studies of Mycobacterium tuberculosis, mutations in codon 306 of the embB gene (embB306) have also been detected in EMB-susceptible clinical isolates. Other studies have found strong associations between embB306 mutations and multidrug resistance, but not EMB resistance. We performed allelic exchange studies in EMB-susceptible and EMB-resistant clinical M.
View Article and Find Full Text PDFMulti-drug tolerance is a key phenotypic property that complicates the sterilization of mammals infected with Mycobacterium tuberculosis. Previous studies have established that iniBAC, an operon that confers multi-drug tolerance to M. bovis BCG through an associated pump-like activity, is induced by the antibiotics isoniazid (INH) and ethambutol (EMB).
View Article and Find Full Text PDFWe studied the role of NK cell-activating receptors and their ligands in the lysis of mononuclear phagocytes infected with the intracellular pathogen Mycobacterium tuberculosis. Expression of the activating receptors NKp30, NKp46, and NKG2D were enhanced on NK cells by exposure to M. tuberculosis-infected monocytes, whereas expression of DNAX accessory molecule-1 and 2B4 was not.
View Article and Find Full Text PDFAntimicrob Agents Chemother
September 2005
Mutations at position 306 of embB (embB306) have been proposed as a marker for ethambutol resistance in Mycobacterium tuberculosis; however, recent reports of embB306 mutations in ethambutol-susceptible isolates caused us to question the biological role of this mutation. We tested 1,020 clinical M. tuberculosis isolates with different drug susceptibility patterns and of different geographical origins for associations between embB306 mutations, drug resistance patterns, and major genetic group.
View Article and Find Full Text PDFIFN-gamma is essential for resistance to many intracellular pathogens, including Mycobacterium tuberculosis. Transcription of the IFN-gamma gene in activated T cells is controlled by the proximal promoter element (-73 to -48 bp). CREB binds to the IFN-gamma proximal promoter, and binding is enhanced by phosphorylation of CREB.
View Article and Find Full Text PDFThe secreted Mycobacterium tuberculosis 10-kDa culture filtrate protein (CFP)10 is a potent T cell Ag that is recognized by a high percentage of persons infected with M. tuberculosis. We determined the molecular basis for this widespread recognition by identifying and characterizing a 15-mer peptide, CFP10(71-85), that elicited IFN-gamma production and CTL activity by both CD4(+) and CD8(+) T cells from persons expressing multiple MHC class II and class I molecules, respectively.
View Article and Find Full Text PDFThe mobile insertion sequence, IS6110, is an important marker in tracking of Mycobacterium tuberculosis strains. Here, we demonstrate that IS6110 can upregulate downstream genes through an outward-directed promoter in its 3' end, thus adding to the significance of this element. Promoter activity was orientation dependent and was localized within a 110 bp fragment adjacent to the right terminal inverted repeat.
View Article and Find Full Text PDFThe ability of Mycobacterium tuberculosis to grow in macrophages is central to its pathogenicity. We found previously that the widespread 210 strain of M. tuberculosis grew more rapidly than other strains in human macrophages.
View Article and Find Full Text PDFWe studied the role of NK cells in regulating human CD8+ T cell effector function against mononuclear phagocytes infected with the intracellular pathogen Mycobacterium tuberculosis. Depletion of NK cells from PBMC of healthy tuberculin reactors reduced the frequency of M. tuberculosis-responsive CD8+IFN-gamma+ cells and decreased their capacity to lyse M.
View Article and Find Full Text PDFTo characterize the manifestations of coinfection with M. tuberculosis and SIV infection, we studied 12 SIV-infected rhesus monkeys, six of which were infected intrabronchially with a low dose of Mycobacterium tuberculosis H37Rv. In the six coinfected animals, M.
View Article and Find Full Text PDFMycobacterium tuberculosis-induced IFN-gamma protein and mRNA expression have been shown to be reduced in tuberculosis patients, compared with healthy tuberculin reactors. To determine whether this decrease was associated with reduced activity of the IFN-gamma promoter, we first studied binding of nuclear proteins to the radiolabeled proximal IFN-gamma promoter (-71 to -40 bp), using EMSAs with nuclear extracts of freshly isolated peripheral blood T cells. Nuclear extracts of T cells from most tuberculosis patients showed markedly reduced expression of proteins that bind to the proximal IFN-gamma promoter, compared with findings in nuclear extracts of T cells from healthy tuberculin reactors.
View Article and Find Full Text PDFWe used human tuberculosis as a model to investigate the role of NK cytotoxic mechanisms in the immune response to intracellular infection. Freshly isolated NK cells and NK cell lines from healthy donors lysed Mycobacterium tuberculosis-infected monocytes to a greater extent than uninfected monocytes. Lysis of infected monocytes was associated with increased expression of mRNA for the NKp46 receptor, but not the NKp44 receptor.
View Article and Find Full Text PDF