In this study, the genetic and molecular diversity of 60 quinoa accessions was assessed using agronomically important traits related to grain yield as well as microsatellite (SSR) markers, and informative markers linked to the studied traits were identified using association study. The results showed that most of the studied traits had a relatively high diversity, but grain saponin and protein content showed the highest diversity. High diversity was also observed in all SSR markers, but KAAT023, KAAT027, KAAT036, and KCAA014 showed the highest values for most of the diversity indices and can be introduced as the informative markers to assess genetic diversity in quinoa.
View Article and Find Full Text PDFCytoplasmic male sterility is a well-proven mechanism for cotton hybrid production. Long non-coding RNAs belong to a class of transcriptional regulators that function in multiple biological processes. The cDNA libraries from the flower buds of the cotton CGMS, it's restorer (Rf) and maintainer lines were sequenced using high throughput NGS technique.
View Article and Find Full Text PDFMale sterility (induced or natural) is a potential tool for commercial hybrid seed production in different crops. Despite numerous endeavors to understand the physiological, hereditary, and molecular cascade of events governing CMS in cotton, the exact biological process controlling sterility and fertility reconstruction remains obscure. During current study, RNA-Seq using Ion Torrent S5 platform is carried out to identify 'molecular portraits' in floral buds among the Cytoplasmic Genic Male Sterility (CGMS) line, its near-isogenic maintainer, and restorer lines.
View Article and Find Full Text PDFCytoplasmic Male Sterility is maternally inherited trait in plants, characterized by failure to produce functional pollen during anther development. Anther development is modulated through the interaction of nuclear and mitochondrial genes. In the present study, differential gene expression of floral buds at the sporogenous stage (SS) and microsporocyte stage (MS) between CGMS and its fertile maintainer line of cotton plants was studied.
View Article and Find Full Text PDFProcess-based crop simulation models require employment of new knowledge for continuous improvement. To simulate growth and development of different genotypes of a given crop, most models use empirical relationships or parameters defined as genetic coefficients to represent the various cultivar characteristics. Such a loose introduction of different cultivar characteristics can result in bias within a simulation, which could potentially integrate to a high simulation error at the end of the growing season when final yield at maturity is predicted.
View Article and Find Full Text PDF