The indirect effect of aerosols on climate through aerosol-cloud-interactions is still highly uncertain and limits our ability to assess anthropogenic climate change. The foundation of this uncertainty is in the number of cloud condensation nuclei (CCN), which itself mainly stems from uncertainty in aerosol sources and how particles evolve to become effective CCN. We analyze particle number size distribution (PNSD) and CCN measurements from an urban site in a two-step method: (1) we use an unsupervised clustering model to classify the main aerosol categories and processes occurring in the urban atmosphere and (2) we explore the influence of the identified aerosol populations on the CCN properties.
View Article and Find Full Text PDFPM was collected during an EMEP winter campaign of 2017-2018 in two urban background sites in Barcelona (BCN) and Granada (GRA), two Mediterranean cities in the coast and inland, respectively. The concentrations of PM, organic carbon (OC), elemental carbon (EC), and organic molecular tracer compounds such as hopanes, anhydro-saccharides, polycyclic aromatic hydrocarbon, and several biogenic and anthropogenic markers of secondary organic aerosols (SOA) were two times higher in GRA compared to BCN and related to the atmospheric mixing heights in the areas. Multivariate curve resolution (MCR-ALS) source apportionment analysis identified primary emissions sources (traffic + biomass burning) that were responsible for the 50% and 20% of the organic aerosol contributions in Granada and Barcelona, respectively.
View Article and Find Full Text PDFUnderstanding the activation properties of aerosol particles as cloud condensation nuclei (CCN) is important for the climate and hydrological cycle, but their properties are not fully understood. In this study, the CCN activation properties of aerosols are investigated at two different sites in southern Spain: an urban background station in Granada and a high altitude mountain station in the Sierra Nevada National Park, with a horizontal separation of 21 km and vertical separation of 1820 m. CCN activity at the urban environment is driven by primary sources, mainly road traffic.
View Article and Find Full Text PDFThe most recent works demonstrate that the lidar overlap function, which describes the overlap between the laser beam and the receiver field of view, can be determined experimentally for the 355 and 532 nm channels using Raman signals. Nevertheless, the Raman channels cannot be used to determine the lidar overlap for the infrared channel (1064 nm) because of their low intensity. In addition, many Raman lidar systems only provide inelastic signals with reasonable signal-to-noise ratio at nighttime.
View Article and Find Full Text PDF