Publications by authors named "Hassan Issafras"

Cancer immunotherapies, such as checkpoint blockade of programmed cell death protein-1 (PD-1), represents a breakthrough in cancer treatment, resulting in unprecedented results in terms of overall and progression-free survival. Discovery and development of novel anti PD-1 inhibitors remains a field of intense investigation, where novel monoclonal antibodies (mAbs) and novel antibody formats (e.g.

View Article and Find Full Text PDF

Background: Cetuximab, the first approved EGFR targeting therapeutic antibody, is currently used to treat colorectal cancer and head and neck cancer. While effective, cetuximab is associated with a higher rate of skin rash, infusion reactions, and gastrointestinal toxicity, which was suggested to be linked to the presence of heterogeneous glycan contents on the Fab of the SP2/0-produced cetuximab.

Objective And Methods: To improve efficacy and minimize toxicity of EGFR inhibition treatment, we re-engineered cetuximab by humanizing its Fab regions and minimizing its glycan contents to generate HLX07.

View Article and Find Full Text PDF

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) has been reported to mediate both tumorigenic and anti-tumor effects . Blockade of the CEACAM1 signaling pathway has recently been implicated as a novel mechanism for cancer immunotherapy. CC1, a mouse anti-CEACAM1 monoclonal antibody (mAb), has been widely used as a pharmacological tool in preclinical studies to inform on CEACAM1 pathway biology although limited data are available on its CEACAM1 blocking characteristics or pharmacodynamic-pharmacokinetic profiles.

View Article and Find Full Text PDF

High-fat (HF) diets typically promote diet-induced obesity (DIO) and metabolic dysfunction (i.e., insulin resistance, hypertriglyceridemia, and hepatic steatosis).

View Article and Find Full Text PDF

Many therapeutic monoclonal antibodies act as antagonists to receptors by targeting and blocking the natural ligand binding site (orthosteric site). In contrast, the use of antibodies to target receptors at allosteric sites (distinct from the orthosteric site) has not been extensively studied. This approach is especially important in metabolic diseases in which endogenous ligand levels are dysregulated.

View Article and Find Full Text PDF

Novel therapies are needed for the treatment of hypoglycemia resulting from both endogenous and exogenous hyperinsulinema. To provide a potential new treatment option, we identified XMetD, an allosteric monoclonal antibody to the insulin receptor (INSR) that was isolated from a human antibody phage display library. To selectively obtain antibodies directed at allosteric sites, panning of the phage display library was conducted using the insulin-INSR complex.

View Article and Find Full Text PDF

Interleukin-1β (IL-1β) is a proinflammatory cytokine that is implicated in many autoinflammatory disorders, but is also important in defense against pathogens. Thus, there is a need to safely and effectively modulate IL-1β activity to reduce pathology while maintaining function. Gevokizumab is a potent anti-IL-1β antibody being developed as a treatment for diseases in which IL-1β has been associated with pathogenesis.

View Article and Find Full Text PDF

Improper protein folding or aggregation can frequently be responsible for low expression and poor functional activity of antibody fragments secreted into the Escherichia coli periplasm. Expression issues also can affect selection of antibody candidates from phage libraries, since antibody fragments displayed on phage also are secreted into the E. coli periplasm.

View Article and Find Full Text PDF

Objective: Atherosclerosis is a condition that is increasingly contributing to worldwide mortality through complications such as stroke and myocardial infarction. IL-1β plays multiple direct, local roles in the formation and stability of the atheroma by eliciting the production of additional cytokines and proteolytic enzymes from macrophages, endothelial cells (EC) and smooth muscle cells (SMC). We therefore tested whether an anti-IL-1β antibody, XOMA 052, might inhibit the secretion of pro-atherogenic cytokines from macrophages in vitro and affect a positive outcome in the Apolipoprotein E-deficient mouse (ApoE(-/-)) model of atherosclerosis in vivo.

View Article and Find Full Text PDF

Interleukin-1β (IL-1β) is a potent mediator of inflammatory responses and plays a role in the differentiation of a number of lymphoid cells. In several inflammatory and autoimmune diseases, serum levels of IL-1β are elevated and correlate with disease development and severity. The central role of the IL-1 pathway in several diseases has been validated by inhibitors currently in clinical development or approved by the FDA.

View Article and Find Full Text PDF

Many therapeutic antibodies act as antagonists to competitively block cellular signaling pathways. We describe here an approach for the therapeutic use of monoclonal antibodies based on context-dependent attenuation to reduce pathologically high activity while allowing homeostatic signaling in biologically important pathways. Such attenuation is achieved by modulating the kinetics of a ligand binding to its various receptors and regulatory proteins rather than by complete blockade of signaling pathways.

View Article and Find Full Text PDF

Arrestins are important proteins, which regulate the function of serpentine heptahelical receptors and contribute to multiple signaling pathways downstream of receptors. The ubiquitous beta-arrestins are believed to function exclusively as monomers, although self-association is assumed to control the activity of visual arrestin in the retina, where this isoform is particularly abundant. Here the oligomerization status of beta-arrestins was investigated using different approaches, including co-immunoprecipitation of epitope-tagged beta-arrestins and resonance energy transfer (BRET and FRET) in living cells.

View Article and Find Full Text PDF

Although homo-oligomerization has been reported for several G protein-coupled receptors, this phenomenon was not studied at low concentrations of receptors. Furthermore, it is not clear whether homo-oligomerization corresponds to an intrinsic property of nascent receptors or if it is a consequence of receptor activation. Here CCR5 receptor oligomerization was studied by bioluminescence resonance energy transfer (BRET) in cells expressing physiological levels of receptors.

View Article and Find Full Text PDF

CC-chemokine receptor 5 (CCR5) is the principal coreceptor for macrophage-tropic strains of human immunodeficiency virus type 1 (HIV-1). We have generated a set of anti-CCR5 monoclonal antibodies and characterized them in terms of epitope recognition, competition with chemokine binding, receptor activation and trafficking, and coreceptor activity. MC-4, MC-5, and MC-7 mapped to the amino-terminal domain, MC-1 to the second extracellular loop, and MC-6 to a conformational epitope covering multiple extracellular domains.

View Article and Find Full Text PDF