Publications by authors named "Hassan Ga'al"

Background: Despite developments in nanotechnology for use in the pharmaceutical field, there is still a need for implementation of this technology in agrochemistry. In this study, silver nanoparticles (AgNPs) were successfully prepared by a facile and an eco-friendly route using two different ligands, 2'-amino-1,1':4',1″-terphenyl-3,3″,5,5″-tetracarboxylic acid (HL) and 1,3,6,8-tetrakis (p-benzoic acid)-pyrene (TBAPy), as reducing agents. The physiochemical properties of the as-obtained AgNPs were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), X-ray diffraction (XRD) and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

Efforts to develop mosquito attractants using vertebrate host volatiles have been well made under laboratory conditions but their attractiveness to mosquitoes in the wild still needs to be evaluated. In the present study, we evaluated the attraction of female Culex pipiens pallens Coquillett (Diptera: Culicidae) to 11 individual chemical compounds found in vertebrate host odors, and to synthetic blends, consisting of different combinations of the compounds. These tests were conducted under laboratory and field conditions using a Y-tube olfactometer and odor-baited traps, respectively.

View Article and Find Full Text PDF

Silver nanoparticles have been studied in a wide range of medical and entomological research works due to their eco-friendly aspects. In our study salicylic acid (SA) and its derivative, 3,5-dinitrosalicylic acid (DNS), were used in a one-step synthesis of silver nanoparticles (AgNPs). First, UV-vis absorption spectroscopy was used to detect the formation of AgNPs.

View Article and Find Full Text PDF

Mosquitoes pose a threat to humans and animals, causing millions of deaths every year. Vector control by effective eco-friendly pesticides of natural origin is a serious issue that requires urgent attention. The employment of green-reducing extracts for nanoparticles biosynthesis in a rapid and single-step process represents a promising strategy.

View Article and Find Full Text PDF

Mosquitoes act as key vector for transmission of devastating parasites and pathogens which affect millions of people globally. In this research, the green synthesis of silver nanoparticles of Cassia fistula fruit pulp as an innovative and operative tool against vector mosquitoes is presented. Silver nanoparticles were characterized by a series of techniques including Fourier transform infrared spectroscopy, Transmission Electron Microscope and confirmed by Scanning Electron Microscope, UV-Vis spectrophotometry and X-ray diffraction.

View Article and Find Full Text PDF