Publications by authors named "Hassan Foroughi-Asl"

SF3B1 mutations are recurrent in chronic lymphocytic leukemia (CLL), particularly enriched in clinically aggressive stereotyped subset #2. To investigate their impact, we conducted RNA-sequencing of 18 SF3B1 and 17 SF3B1 subset #2 cases and identified 80 significant alternative splicing events (ASEs). Notable ASEs concerned exon inclusion in the non-canonical BAF (ncBAF) chromatin remodeling complex subunit, BRD9, and splice variants in eight additional ncBAF complex interactors.

View Article and Find Full Text PDF

In this longitudinal study, cell-free tumour DNA (a liquid biopsy) from plasma was explored as a prognostic biomarker for gastro-oesophageal cancer. Both tumour-informed and tumour-agnostic approaches for plasma variant filtering were evaluated in 47 participants. This was possible through sequencing of DNA from tissue biopsies from all participants and cell-free DNA from plasma sampled before and after surgery (n = 42), as well as DNA from white blood cells (n = 21) using a custom gene panel with and without unique molecular identifiers (UMIs).

View Article and Find Full Text PDF
Article Synopsis
  • Patients with chronic lymphocytic leukemia (CLL) on ibrutinib treatment often develop resistance due to mutations in the BTK and PLCG2 genes, with varying frequencies impacting patient outcomes.
  • A study of 98 CLL patients revealed that 65% of those who relapsed exhibited at least one mutation in BTK or PLCG2, while 12% of responding patients also had mutations, indicating a potential for progression.
  • The findings suggest that other genetic mutations may contribute to resistance, with BTK mutation profiles differing between relapsing patients, but no significant impact on TP53 mutations was observed, highlighting the complexity of treatment resistance.
View Article and Find Full Text PDF

Recent evidence suggests that the prognostic impact of gene mutations in patients with chronic lymphocytic leukemia (CLL) may differ depending on the immunoglobulin heavy variable (IGHV) gene somatic hypermutation (SHM) status. In this study, we assessed the impact of nine recurrently mutated genes (BIRC3, EGR2, MYD88, NFKBIE, NOTCH1, POT1, SF3B1, TP53, and XPO1) in pre-treatment samples from 4580 patients with CLL, using time-to-first-treatment (TTFT) as the primary end-point in relation to IGHV gene SHM status. Mutations were detected in 1588 (34.

View Article and Find Full Text PDF

Despite major advancements in lung cancer treatment, long-term survival is still rare, and a deeper understanding of molecular phenotypes would allow the identification of specific cancer dependencies and immune evasion mechanisms. Here we performed in-depth mass spectrometry (MS)-based proteogenomic analysis of 141 tumors representing all major histologies of non-small cell lung cancer (NSCLC). We identified six distinct proteome subtypes with striking differences in immune cell composition and subtype-specific expression of immune checkpoints.

View Article and Find Full Text PDF

Objectives: To investigate gene alterations as diagnostic and prognostic markers in upper tract urothelial carcinoma (UTUC).

Patients And Methods: Patients with UTUC who underwent nephroureterectomy between 2005 and 2012 were followed until November 2020. DNA was extracted from paraffin-embedded tumour tissue.

View Article and Find Full Text PDF

Background: Atherosclerosis is a chronic inflammatory disease in part caused by lipid uptake in the vascular wall, but the exact underlying mechanisms leading to acute myocardial infarction and stroke remain poorly understood. Large consortia identified genetic susceptibility loci that associate with large artery ischemic stroke and coronary artery disease. However, deciphering their underlying mechanisms are challenging.

View Article and Find Full Text PDF

Background: Tobacco smoking is a major risk factor for atherosclerotic disease and has been associated with DNA methylation (DNAm) changes in blood cells. However, whether smoking influences DNAm in the diseased vascular wall is unknown but may prove crucial in understanding the pathophysiology of atherosclerosis. In this study, we associated current tobacco smoking to epigenome-wide DNAm in atherosclerotic plaques from patients undergoing carotid endarterectomy.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) have identified over two hundred chromosomal loci that modulate risk of coronary artery disease (CAD). The genes affected by variants at these loci are largely unknown and an untapped resource to improve our understanding of CAD pathophysiology and identify potential therapeutic targets. Here, we prioritized 68 genes as the most likely causal genes at genome-wide significant loci identified by GWAS of CAD and examined their regulatory roles in 286 metabolic and vascular tissue gene-protein sub-networks ("modules").

View Article and Find Full Text PDF

Background And Aims: Mitochondrial damage and augmented production of reactive oxygen species (ROS) may represent an intermediate step by which hypercholesterolemia exacerbates atherosclerotic lesion formation.

Methods: To test this hypothesis, in mice with severe but genetically reversible hypercholesterolemia (i.e.

View Article and Find Full Text PDF

Background: As genome-wide association efforts, such as CARDIoGRAM and METASTROKE, are ongoing to reveal susceptibility loci for their underlying disease-atherosclerotic disease-identification of candidate genes explaining the associations of these loci has proven the main challenge. Many disease susceptibility loci colocalize with DNA regulatory elements, which influence gene expression through chromatin interactions. Therefore, the target genes of these regulatory elements can be considered candidate genes.

View Article and Find Full Text PDF

Objective: Recently, poliovirus receptor-related 2 () emerged as a top gene in a global gene expression study aiming to detect plasma cholesterol-responsive genes causally related to atherosclerosis regression in hypercholesterolemic mice. PVRL2 is an adherens junction protein implied to play a role in transendothelial migration of leukocytes, a key feature in atherosclerosis development. In this study, we investigated the effect of deficiency on atherosclerosis development and transendothelial migration of leukocytes activity.

View Article and Find Full Text PDF

Background: Genome-wide association studies (GWAS) have revealed many susceptibility loci for complex genetic diseases. For most loci, the causal genes have not been identified. Currently, the identification of candidate genes is predominantly based on genes that localize close to or within identified loci.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) have identified hundreds of cardiometabolic disease (CMD) risk loci. However, they contribute little to genetic variance, and most downstream gene-regulatory mechanisms are unknown. We genotyped and RNA-sequenced vascular and metabolic tissues from 600 coronary artery disease patients in the Stockholm-Tartu Atherosclerosis Reverse Networks Engineering Task study (STARNET).

View Article and Find Full Text PDF

Inferring molecular networks can reveal how genetic perturbations interact with environmental factors to cause common complex diseases. We analyzed genetic and gene expression data from seven tissues relevant to coronary artery disease (CAD) and identified regulatory gene networks (RGNs) and their key drivers. By integrating data from genome-wide association studies, we identified 30 CAD-causal RGNs interconnected in vascular and metabolic tissues, and we validated them with corresponding data from the Hybrid Mouse Diversity Panel.

View Article and Find Full Text PDF

Objective: The genetically modified mouse is the most commonly used animal model for studying the pathogenesis of atherosclerotic disease. We aimed to assess if mice atherosclerosis-related genes could be validated in human disease through examination of results from genome-wide association studies.

Approach And Results: We performed a systematic review to identify atherosclerosis-causing genes in mice and carried out gene-based association tests of their human orthologs for an association with human coronary artery disease and human large artery ischemic stroke.

View Article and Find Full Text PDF

Objective: Genome-wide association studies have to date identified 159 significant and suggestive loci for coronary artery disease (CAD). We now report comprehensive bioinformatics analyses of sequence variation in these loci to predict candidate causal genes.

Approach And Results: All annotated genes in the loci were evaluated with respect to protein-coding single-nucleotide polymorphism and gene expression parameters.

View Article and Find Full Text PDF

Background: The eicosanoid genes ALOX5, ALOX5AP and LTA4H have been implicated in atherosclerosis. We assessed the impact of common variants in these genes on gene expression, circulating protein levels, and atherosclerotic plaque phenotypes.

Methods: We included patients from the Stockholm Atherosclerosis Gene Expression study (STAGE, N = 109), and the Athero-Express Biobank Study (AE, N = 1443).

View Article and Find Full Text PDF

Background: Despite recent discoveries of new genetic risk factors, the majority of risk for coronary artery disease (CAD) remains elusive. As the most proximal sensor of DNA variation, RNA abundance can help identify subpopulations of genetic variants active in and across tissues mediating CAD risk through gene expression.

Methods And Results: By generating new genomic data on DNA and RNA samples from the Stockholm Atherosclerosis Gene Expression (STAGE) study, 8156 cis-acting expression quantitative trait loci (eQTLs) for 6450 genes across 7 CAD-relevant tissues were detected.

View Article and Find Full Text PDF

Objective: Using a multi-tissue, genome-wide gene expression approach, we recently identified a gene module linked to the extent of human atherosclerosis. This atherosclerosis module was enriched with inherited risk for coronary and carotid artery disease (CAD) and overlapped with genes in the transendothelial migration of leukocyte (TEML) pathway. Among the atherosclerosis module genes, the transcription cofactor Lim domain binding 2 (LDB2) was the most connected in a CAD vascular wall regulatory gene network.

View Article and Find Full Text PDF

Plasma cholesterol lowering (PCL) slows and sometimes prevents progression of atherosclerosis and may even lead to regression. Little is known about how molecular processes in the atherosclerotic arterial wall respond to PCL and modify responses to atherosclerosis regression. We studied atherosclerosis regression and global gene expression responses to PCL (≥80%) and to atherosclerosis regression itself in early, mature, and advanced lesions.

View Article and Find Full Text PDF

Background: The Kruskal-Wallis test is a popular non-parametric statistical test for identifying expression quantitative trait loci (eQTLs) from genome-wide data due to its robustness against variations in the underlying genetic model and expression trait distribution, but testing billions of marker-trait combinations one-by-one can become computationally prohibitive.

Results: We developed kruX, an algorithm implemented in Matlab, Python and R that uses matrix multiplications to simultaneously calculate the Kruskal-Wallis test statistic for several millions of marker-trait combinations at once. KruX is more than ten thousand times faster than computing associations one-by-one on a typical human dataset.

View Article and Find Full Text PDF