The efficacy of injectable micellar carriers is hindered due to the disassembly of micelles into free surfactants in the body, resulting in their dilution below the critical micelle concentration (CMC). Copolymer micelles were developed to address this issue, containing a superhydrophilic zwitterionic block and a superhydrophobic block with a disulfide bond, which exhibited a CMC lower than conventional micellar carriers. Cleavable copolymers composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) zwitterion and polycaprolactone CHLZW as the shell, with gold nanoparticles as their core, were studied to deliver doxorubicin to tumor cells while reducing the side effect of the free cytotoxic agent.
View Article and Find Full Text PDFInt J Biol Macromol
September 2023
A pH-sensitive bilayer electrospun nanofibrous mat containing both antibiotic (gentamicin sulfate, GEN) and non-steroidal anti-inflammatory (diclofenac sodium, DIC) drugs was fabricated for burn wound dressing by electrospinning technique, in which ethyl cellulose (EC) and ethyl cellulose/Eudragit S-100 (EC/ES-100) formed the top and bottom layers, respectively. The fabricated pH-sensitive bilayer electrospun nanofibrous mats were characterized from aspects of both structure and efficiency. Physicochemical properties were investigated via SEM, FTIR, and TGA.
View Article and Find Full Text PDFInt J Biol Macromol
December 2022
The main goal of the present project was to design and develop ibuprofen (IBU) and layered double hydroxides-vancomycin (LDH-VAN) nanohybrid loaded bionanocomposite fibrous mats to increase the wound healing rate. Thus, first, LDH-VAN nanohybrid particles was synthesized by in-situ incorporation of VAN into the Mg-Al-LDH interlayers during the co-precipitation of hydroxides. Then, LDH-VAN/IBU/CMC-PEO bionanocomposite fibrous mats were fabricated by electrospinning technique.
View Article and Find Full Text PDFThe main purpose of the present study was to fabricate mucoadhesive bio-nanocomposite hydrogels to prolong the drug retention time in the stomach. In these bio-nanocomposite hydrogels, chitosan (CH) was used as a bioadhesive matrix, montmorillonite (MMT) was applied to modulate the release rate, and tripolyphosphate (TPP) was the cross-linking agent. The test samples were analyzed via different methods such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM).
View Article and Find Full Text PDFIn this study, buccal mucoadhesive tablets of meloxicam were formulated for drug delivery as an alternative route. Direct compression method was applied for the preparation of tablets. Also, different polymers, including hydroxypropyl methyl cellulose (HPMC) 1000, 4000, and 10000, as well as carbopol 934p and carbopol 971p were used as the mucoadhesive polymer and retardant polymer.
View Article and Find Full Text PDFThe present study deals with the fabrication of ibuprofen-mesoporous hydroxyapatite (IBU-MHA) particles via the incorporation of ibuprofen (IBU)-as a nonsteroidal anti-inflammatory drug-into mesoporous hydroxyapatite nanoparticles (MHANPs) using an impregnation process, as a novel drug delivery device. MHANPs were synthesized by a self-assembly process using cetyltrimethylammonium bromide (CTAB) as a cationic surfactant and 1-dodecanethiol as a pore expander under basic condition. The focus of the present study was to optimize the incorporation of IBU molecules into MHANPs under different loading conditions.
View Article and Find Full Text PDFWith continual rapid developments in the biomedical field and understanding of the important mechanisms and pharmacokinetics of biological molecules, controlled drug delivery systems (CDDSs) have been at the forefront over conventional drug delivery systems. Over the past several years, scientists have placed boundless energy and time into exploiting a wide variety of excipients, particularly diverse polymers, both natural and synthetic. More recently, the development of nano polymer blends has achieved noteworthy attention due to their amazing properties, such as biocompatibility, biodegradability and more importantly, their pivotal role in controlled and sustained drug release in vitro and in vivo.
View Article and Find Full Text PDFInt J Biol Macromol
December 2019
Recently, nanocomposite nanofibers have been extensively used for biomedical applications. It is expected that simultaneous incorporation of antibiotic drugs and ZnO nanoparticles into nanofiber resulted in providing the synergistic anti-bacterial effect. The main aim of the present study is to fabricate polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC)-ZnO nanocomposite fibrous mats containing erythromycin (EM) drug and crosslink them using 2% glutaraldehyde vapor and 3% AlCl alcoholic solution.
View Article and Find Full Text PDFThe present study describes the fabrication of Tripolyphosphate (TPP)-crosslinked nanofibrous mats based on chitosan for use as a floating gastro-retentive delivery system. TPP-crosslinked chitosan (CH)/poly (ethylene oxide) (PEO)- ranitidine hydrochloride (RH) electrospun nanofibers (75.27 ± 2.
View Article and Find Full Text PDFThe main aim of the present study was to design pH-sensitive bionanocomposite hydrogel beads based on CMC and HNT-AT nanohybrid and evaluate whether prepared bionanocomposite beads have the potential to be used in drug delivery applications. Atenolol (AT), as a model drug, was incorporated into the lumen of HA nanotubes via the co-precipitation technique. HNT/AT nanohybrid and CMC/HNT-AT beads were characterized via XRD, SEM, TGA, and FT-IR techniques.
View Article and Find Full Text PDFThe present work explains the preparation of new pH-sensitive bionanocomposite beads based on carboxymethyl cellulose (CMC) and ZnO nanoparticles for use as controlled release drug delivery systems. Fe ion as physical crosslinking agent was used to prepare ionic cross-linked bionanocomposite hydrogel beads. Propranolol hydrochloride (PPN) has been chosen as a model drug.
View Article and Find Full Text PDFZnO nanoparticles were synthesized in situ during the formation of physically cross-linked chitosan hydrogel beads using sodium tripolyphosphate as the cross-linker. The aim of the study was to investigate whether these nanocomposite beads have the potential to be used in drug delivery applications. The formation of ZnO nanoparticles (ZnONPs) in the hydrogels was confirmed by X-ray diffraction and scanning electron microscopy studies.
View Article and Find Full Text PDF