Plant Cell Environ
December 2024
To achieve sustainable disease management in agriculture, there's a growing interest in using beneficial microorganisms as alternatives to chemical pesticides. Bacteria, in particular, have been extensively studied as biological control agents, but their inconsistent performance and limited availability hinder broader adoption. Research continues to explore innovative biocontrol technologies, which can be enhanced by combining silicon (Si) with biocontrol plant growth-promoting rhizobacteria (PGPR).
View Article and Find Full Text PDFLemon balm (Melissa officinalis L.) is a valuable medicinal plant, but its growth can be significantly impacted by drought stress. This study aimed to mitigate the adverse effects of water deficit stress on lemon balm biomass by integrating poultry manure compost, poultry manure biochar, NPK fertilizer, Trichoderma harzianum, Thiobacillus thioparus, and elemental sulfur as soil amendments.
View Article and Find Full Text PDFChoosing appropriate tillage methods and applying the right amount of chemical fertilizers are pivotal for optimizing wheat management and enhancing wheat quality. This study investigated the influence of conservation agriculture and phosphorus levels on nutrient content, yield components, and quality traits of wheat in a corn-wheat rotation. Conducted over five years in field conditions, the study employed a randomized complete block design with tillage treatments (conventional tillage, CT; minimum tillage, MT; and no tillage, NT) and phosphorus levels (no fertilizer use, P0; and 100% fertilizer recommendation, PR) as factors.
View Article and Find Full Text PDFThe application of organic amendments is one way to manage low water irrigation in paddy soils. In this 60-day greenhouse pot experiment involving paddy soil undergoing drying-rewetting cycles, we examined the effects of two organic amendments: azo-compost with a low carbon to phosphorus ratio (C:P) of 40 and rice straw with a high C:P ratio of 202. Both were applied at rates of 1.
View Article and Find Full Text PDFIndole-3-acetic acid (IAA), a fundamental phytohormone categorized under auxins, not only influences plant growth and development but also plays a critical role in plant-microbe interactions. This study reviews the role of IAA in bacteria-plant communication, with a focus on its biosynthesis, regulation, and the subsequent effects on host plants. Bacteria synthesize IAA through multiple pathways, which include the indole-3-acetamide (IAM), indole-3-pyruvic acid (IPyA), and several other routes, whose full mechanisms remain to be fully elucidated.
View Article and Find Full Text PDFRice (Oryza sativa L.) cultivation in regions marked by elevated arsenic (As) concentrations poses significant health concerns due to As uptake by the plant and its subsequent entry into the human food chain. With rice serving as a staple crop for a substantial share of the global population, addressing this issue is critical for food security.
View Article and Find Full Text PDFDust causes adverse effects on the physiological and biochemical properties of plants, and under soil salinity conditions, these effects seem to be intensified, which limits their use in the development of the green belt around or within cities. In the research, the effect of salt (0, 30, and 60 dS m) on air pollution (dust, 0 and 1.5 g m 30 days) tolerance index (APTI), peroxidase activity, and protein content of three desert species Seidlitzia rosmarinus, Haloxylon aphyllum, and Nitraria schoberi was investigated.
View Article and Find Full Text PDFA currently serious agronomic concern for paddy soils is arsenic (As) contamination. Paddy soils are mostly utilized for rice cultivation. Arsenite (As(III)) is prevalent in paddy soils, and its high mobility and toxicity make As uptake by rice substantially greater than that by other food crops.
View Article and Find Full Text PDFInvestigating the effect of presoaking, as one of the most important physical factors affecting the adsorption behavior of biochar, on the adsorption of heavy metals by modified or non-modified biochar and presoaking mechanism is still an open issue. In this study, the water presoaking effect on the kinetics of cadmium (Cd) adsorption by rice husk biochar (produced at 450 °C, B1, and at 600 °C, B2) and the rice husk biochar modified with magnesium chloride (B1 modified with MgCl, MB1, and B2 modified with MgCl, MB2) was investigated. Furthermore, the effect of pH (2, 5, and 6), temperature (15, 25, and 35 °C), and biochar particle size (100 and 500 µm) on the kinetics of Cd adsorption was also investigated.
View Article and Find Full Text PDFDust causes adverse effects on the physiological and biochemical characteristics of plants and limits their use in the development of the green belt. Air Pollution Tolerance Index (APTI) is an important tool to screen out plants, based on their tolerance or sensitivity level to different air pollutants. The aim of this study was to investigate the effect of two plant growth-promoting bacterial strains ( SB and HR) and their combination as a biological solution on APTI of three desert plant species of , and under dust stress (0 and 1.
View Article and Find Full Text PDFBecause of global warming, desertification is increasing. One of the best strategies for combating desertification is reforestation of forests and biological operations of vegetation. However, events like soil salinity and dust storms, as the most important manifestations of desertification, prevent vegetation from settling in these areas.
View Article and Find Full Text PDFExcessive use of antibiotics in the healthcare sector and livestock farming has amplified antimicrobial resistance (AMR) as a major environmental threat in recent years. Abiotic stresses, including soil salinity and water pollutants, can affect AMR in soils, which in turn reduces the yield and quality of agricultural products. The objective of this study was to investigate the effects of antibiotic resistance and abiotic stresses on antimicrobial resistance in agricultural soils.
View Article and Find Full Text PDFSalinity stress is one of the most destructive non-biological stresses in plants that has adversely affected many agricultural lands in the world. Salinity stress causes many morphological, physiological, epigenetic and genetic changes in plants by increasing sodium and chlorine ions in the plant cells. The plants can alleviate this disorder to some extent through various mechanisms and return the cell to its original state, but if the salt dose is high, the plants may not be able to provide a proper response and can die due to salt stress.
View Article and Find Full Text PDFHydrogel polymers have been used to enhance water and nutrient retention in agricultural soils. The incorporation of nanoparticles to yield composite hydrogels has also gained substantial momentum over the years. The aim of the research was to investigate the effect of hydrogel-nano natural char composite (reinforced starch-based hydrogels with natural char nanoparticles) at three levels 0%, 0.
View Article and Find Full Text PDFPhosphorus (P) availability is usually low in soils around the globe. Most soils have a deficiency of available P; if they are not fertilized, they will not be able to satisfy the P requirement of plants. P fertilization is generally recommended to manage soil P deficiency; however, the low efficacy of P fertilizers in acidic and in calcareous soils restricts P availability.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2021
Polycyclic aromatic hydrocarbons (PAHs) bounded to street dust are a severe environmental and human health danger. This study provides preliminary information on the abundance of PAHs in street dust from Rafsanjan city, Iran, where industrial emissions are high and data are lacking. Seventy street dust samples were collected from streets with different traffic loads.
View Article and Find Full Text PDFIn this study, the effects of three halotolerant rhizobacterial isolates AL, HR, and SB, which are able to grow at a salinity level of 1600 mM NaCl, with multiple plant growth promoting (PGP) traits on some seed and forage quality attributes, and vegetative, reproductive, biochemical and physiological characteristics of wheat plant irrigated with saline water (0, 40, 80, and 160 mM NaCl) were investigated. The ability of halotolerant bacterial isolates to produce PGP traits was affected by salinity levels, depending upon the bacterial isolates. Salinity stress significantly affected the yield, quality, and growth of wheat by modifying the morpho-physiological and biochemical traits of the exposed plants.
View Article and Find Full Text PDFEnvironmental abiotic stress conditions, especially drought and salinity, are currently the major factors that reduce crop yields worldwide. It has been reported that plant-associated beneficial bacteria, especially strains resistant to abiotic stresses that could maintain their efficiency under environmental challenging conditions, can contribute to alleviate abiotic stresses of host plants. In this study, we presented the assembly of the whole genome of ANP8, a plant growth-promoting bacterium resistant to salinity and drought stresses.
View Article and Find Full Text PDFPaddy soils represent the largest anthropogenic wetlands on earth. Soil drying and rewetting that occurs annually inflict significant stress on soil microbial activities in paddy soils. An incubation experiment of 60 years of paddy soil was conducted to simulate the conditions of paddy fields (25 °C and 75% air humidity) during a 16-day incubation time.
View Article and Find Full Text PDFA pot experiment was carried out to evaluate the effect of a municipal solid waste (MSW) biochar and a bacterial strain on the forage maize growth and the concentration of lead (Pb) and cadmium (Cd) in the edible tissue of maize irrigated with water contaminated with Cd (5 mg L) and Pb (100 mg L). Experimental treatments included (i) bacterial strain at two levels: no bacterial strain and R7; (ii) MSW biochar at three levels: 0, 1, and 3% (); and (iii) irrigation water quality at five levels: plants irrigated with 100% freshwater (FW), plants irrigated with 75%FW + 25% contaminated water (CW), plants irrigated with 50%FW + 50% CW, plants irrigated with 25%FW + 75% CW, and plants irrigated with 100% CW. The effect of various treatments on maize growth indices and concentration of Pb(II) and Cd(II) in the plant was significant at 5% level.
View Article and Find Full Text PDFThe use of nitrification inhibitors (NIs) such as 3,4-dimethylpyrazole phosphate (DMPP) has been suggested to diminish agricultural soil nitrate (NO) loss and increase nitrogen (N) use efficiency (NUE). However, the yield of ammonium (NH)-sensitive plants such as spinach (Spinacia oleracea L.) may be adversely affected by the application of NIs at high N levels and, on the other hand, the efficiency of the NIs may also be affected by soil amendments such as biochar.
View Article and Find Full Text PDFSaline area may tend to be a productive land; however, many of salt-affected soils have nitrogen limitation and depend on plant-associated diazotrophs as their source of 'new' nitrogen. Herein, a total of 316 salinity tolerant nitrogen-fixing endophytic bacteria were isolated from roots of the halophyte Suaeda sp. sampled from 22 different areas of Iran to prepare the collection of nitrogen-fixing bacterial endophytes and evaluate the plant growth-promoting effect of effective isolates on growth of the halophyte Suaeda maritima.
View Article and Find Full Text PDF