Publications by authors named "Hassan Bazzi"

Fluoride-ion batteries are a promising alternative to lithium-ion batteries by dint of the greater crustal abundance of fluorine and the potential to alleviate the need for metal electrodeposition. However, conventional metal fluoride cathodes typically rely on conversion-type reactions that require propagation of a reaction-diffusion front, thereby limiting cycling performance and rate capability. In contrast, the topochemical insertion of fluoride-ions in periodic solids remains a relatively unexplored approach.

View Article and Find Full Text PDF

This mini-review highlights the transformative potential of benzothiazole (BTz)- and benzoxazole (BOz)-based boron-complexed dyes. It represents an innovative evolution of the classic boron-dipyrromethene (BODIPY) structure, which is well established for its superior photophysical properties. Incorporating BTz- or BOz-ligands into the borane (-BR) component, originates more electron-deficient architecture, enabling novel modes of complexation and addressing limitations such as spectral overlap and self-quenching in traditional BODIPY dyes.

View Article and Find Full Text PDF

Demand for lithium is expected to quadruple by the end of the decade. Without new sources of production, the supply-demand curve is expected to invert. Traditional geological reserves will not be able to meet the anticipated gap, thus unconventional sources of lithium will need to be utilized, setting the stage for fierce competition for perhaps the most critical of mineral resources required for the energy transition.

View Article and Find Full Text PDF
Article Synopsis
  • Kinesin-1 is a key motor protein responsible for moving organelles along microtubules, crucial for cell health and function, and typically studied at pH 6.9.
  • Experiments across a pH range of 5.5-9.8 reveal that increasing pH correlates with higher speeds and detachment rates of kinesin-1, with the highest ATPase activity at alkaline pH but optimal performance in cargo transport at acidic pH.
  • These findings highlight the importance of maintaining pH balance in cells for effective functioning of motor proteins like kinesin-1, which is essential for intracellular transport.
View Article and Find Full Text PDF

Natural gas is the primary fuel used in U.S. residences, yet little is known about its consumption patterns and drivers.

View Article and Find Full Text PDF

The underpinnings of bipedal gait are reviewed from an evolutionary biology and prognostic health perspective to better understand issues and concerns related to cell phone use during ambulation and under conditions of distraction and interference. We also consider gait-related health issues associated with the fear of or risk of falling and include prognostic dimensions associated with cognitive decline, dementia, and mortality. Data were acquired on 21 healthy young adults without hearing loss, vestibular, balance, otological or neurological dysfunction using a computerized walkway (GAITRite Walkway System) combined with specialized software algorithms to extract gait parameters.

View Article and Find Full Text PDF

The synthesis and applications of ring-opening metathesis polymerization (ROMP) derived poly(olefins) have emerged as an exciting area of great interest in the field of biomaterials science. The major focus of this mini-review is to present recent advances in the synthesis of functional materials using ROMP-derived poly(olefins) utilized for drug release, sensing, and cellular uptake in the past seven years (2015-2022). This review reveals that materials synthesized by ROMP-derived well-defined functional poly(olefins) stand to be highly promising systems for medical as well as biological studies.

View Article and Find Full Text PDF

The synthesis and characterization of asymmetric alkoxy- are reported, fluoro-benzothiadiazole (BT) acceptor core derivatized with a series of six different heterocycles (selenophene, thiophene, furan, 5-thiazole, 2-thiazole and 2-oxazole). The effect of the flanked-heterocycles containing different chalcogen atoms of the six homopolymers (HPX) is studied using optical, thermal, electrochemical, and computational analysis. Computational calculations indicate a strong relationship between the most stable conformation for each homopolymer and their bearing heterocycle, thus homopolymers HPSe', HPTp', HPFu', and HPTzC5, adopted the syn-syn and syn-anti conformations due to their noncovalent interactions with shorter distances, while HPTzC2' and HPOx' demonstrate preference for the anti-anti conformation.

View Article and Find Full Text PDF

Novel methods to synthesize electron-deficient π-conjugated polymers utilizing transition-metal-free coupling reactions for the use of nonfunctionalized monomers are attractive due to their improved atom economy and environmental prospective. Herein we describe the use of PrMgCl·LiCl complex to afford thiazole-based conjugated polymers in the absence of any transition metal catalyst, that enables access to well-defined polymers with good molecular weights. The mechanistically distinct polymerizations proceeded via nucleophilic aromatic substitution (SAr) reaction supported by density functional theory (DFT) calculations.

View Article and Find Full Text PDF

There a few reports of rhodamine-based fluorescent sensors for selective detection of only Al, due to the challenge of identifying a suitable ligand for binding Al ion. The use of fluorophore moieties appended to a polymer backbone for sensing applications is far from mature. Here, we report a new fluorescent probe/monomer 4 and its ROMP derived polymer P for specific detection of Al ions.

View Article and Find Full Text PDF

Functionalization of polyolefins, in particular polyisobutylene, remains a relatively unexplored application for the Michael reaction. This work evaluates the potential of polyisobutylene acrylate (PIBA) chain-end modification via organocatalyzed thiol-Michael and aza-Michael additions. A series of chain-end functional polyisobutylene oligomers are prepared using "click" reactions of thiols or amines to PIBA in the presence of 0.

View Article and Find Full Text PDF

Carbon monoxide (CO) is an important biological gasotransmitter in living cells. Precise spatial and temporal control over release of CO is a major requirement for clinical application. To date, the most reported carbon monoxide releasing materials use expensive fabrication methods and require harmful and poorly designed tissue-penetrating UV irradiation to initiate the CO release precisely at infected sites.

View Article and Find Full Text PDF

TPEN is an amino chelator of transition metals that is effective at the cellular and whole organism levels. Although TPEN of often used as a selective zinc chelators, it has affinity for copper and iron and has been shown to chelate both biologically. We have previously shown that TPEN selectively kills colon cancer cells based on its ability to chelate copper, which is highly enriched in colon cancer cells.

View Article and Find Full Text PDF

The objective of this paper is to present an analysis of Sentinel-1 derived surface soil moisture maps (S1-SSM) produced with high spatial resolution (at plot scale) and a revisit time of six days for the Occitanie region located in the South of France as a function of precipitation data, in order to investigate the potential of S1-SSM maps for detecting heavy rainfalls. First, the correlation between S1-SSM maps and rainfall maps provided by the Global Precipitation Mission (GPM) was investigated. Then, we analyzed the effect of the S1-SSM temporal resolution on detecting heavy rainfall events and the impact of these events on S1-SSM values as a function of the number of days that separated the heavy rainfall and the S1 acquisition date (cumulative rainfall more than 60 mm in 24 hours or 80 mm in 48 hours).

View Article and Find Full Text PDF

Low-viscosity poly(α-olefin)s (PAOs) either alone or with functional hydrocarbon oligomer cosolvents are nontoxic, nonvolatile, recyclable solvent systems that effectively and efficiently sequester trace amounts of nonpolar organic compounds such as benzene and halogenated organics from water. More polar compounds including perfluorooctanoic acid and nitrobenzene or water-miscible compounds such as THF and triethylamine can also be sequestered if the PAO phase contains an H-bonding PAO-anchored cosolvent.

View Article and Find Full Text PDF

Sequence-defined polymers with customizable sequences, monodispersity, substantial length, and large chemical diversity are of great interest to mimic the efficiency and selectivity of biopolymers. We report an efficient, facile, and scalable synthetic route to introduce many chemical functionalities, such as amino acids and sugars in nucleic acids and sequence-controlled oligophosphodiesters. Through achiral tertiary amine molecules that are perfectly compatible with automated DNA synthesis, readily available amines or azides can be turned into phosphoramidites in two steps only.

View Article and Find Full Text PDF

As colloidal self-assembly increasingly approaches the complexity of natural systems, an ongoing challenge is to generate non-centrosymmetric structures. For example, patchy, Janus or living crystallization particles have significantly advanced the area of polymer assembly. It has remained difficult, however, to devise polymer particles that associate in a directional manner, with controlled valency and recognition motifs.

View Article and Find Full Text PDF

The title molecules are sought in connection with various synthetic applications. The aliphatic fluorous alcohols R CHOH (R = CF(CF) ; = 11, 13, 15) are converted to the triflates R CHOTf (TfO, pyridine; 22-61%) and then to R CHI (NaI, acetone; 58-69%). Subsequent reactions with NaOCl/HCl give iodine(III) dichlorides R CHICl ( = 11, 13; 33-81%), which slowly evolve Cl.

View Article and Find Full Text PDF

This paper reports the efficient synthesis of the first class of polyisobutylene(PIB)-supported palladium-PEPPSI precatalyst (PEPPSI = pyridine-enhanced precatalyst preparation, stabilization, and initiation). The new complexes are employed in Buchwald-Hartwig amination of aryl chlorides and are found to be reasonably active in the titled cross-coupling reaction. The supported catalysts are tested in polar (1,4-dioxane and 1,2-dimethoxyethane) as well as in aliphatic reaction media (toluene and n-heptane) and display superior activity in the highly lipophilic solvent (n-heptane).

View Article and Find Full Text PDF

This study describes the use of polyisobutylene (PIB) to phase-anchor pyridine ligands that form a phase-separable Grubbs third-generation catalyst. We further show that this complex is useful in ring-opening metathesis polymerization (ROMP) reactions. These PIB-bound pyridine-ligated Grubbs catalysts provide the same benefits of control over polymer chain growth and polydispersity of the product as their low-molecular-weight analogs and reduce Ru leaching in ROMP products from approximately 16% (820 ppm residues) as seen with a similar pyridine-ligated catalyst to a value of approximately 3% (160 ppm residues).

View Article and Find Full Text PDF

The fluorous alkenes HC[double bond, length as m-dash]CHR (R = (CF)CF; n = 8, 10) undergo the Mizoroki-Heck reaction with a variety of aromatic monobromides and polybromides such as 1,3- and 1,4-CHBr, 1,3,5-CHBr, 1,3,5-CHBrCl, 1,4-XCHBr (X = CF, R, COCH, CN, 1,4-OCHBr), 1,2-ONCHBr, 5-bromoisoquinoline, 5-bromopyrimidine, 3-bromo-5-methoxypyridine, and 3,5-dibromopyridine (sixteen examples, 78% average isolated yield). Typically, 1.2-2.

View Article and Find Full Text PDF

We report a micelle-templated method to enhance the reactivity of DNA with highly hydrophobic molecules. Lipids, chromophores and polymers can be conjugated to DNA in high yield and under mild conditions. This method expands the range of DNA-templated reactions for DNA-encoded libraries, oligonucleotide and drug delivery, nanopore mimetics and DNA nanotechnology.

View Article and Find Full Text PDF

A major challenge in lubrication technology is to enhance lubricant performance at extreme temperatures that exceed conventional engine oil thermal degradation limits. Soft noble metals such as silver have low reactivity and shear strength, which make them ideal solid lubricants for wear protection and friction reduction between contacting surfaces at high temperatures. However, achieving adequate dispersion in engine lubricants and metallic silver deposition over predetermined temperatures ranges presents a significant chemical challenge.

View Article and Find Full Text PDF

Correction for 'Antisense precision polymer micelles require less poly(ethylenimine) for efficient gene knockdown' by Johans J. Fakhoury, et al., Nanoscale, 2015, 7, 20625-20634.

View Article and Find Full Text PDF

Ruthenium and molybdenum catalysts are widely used in synthesis of both small molecules and macromolecules. While major developments have led to new increasingly active catalysts that have high functional group compatibility and stereoselectivity, catalyst/product separation, catalyst recycling, and/or catalyst residue/product separation remain an issue in some applications of these catalysts. This review highlights some of the history of efforts to address these problems, first discussing the problem in the context of reactions like ring-closing metathesis and cross metathesis catalysis used in the synthesis of low molecular weight compounds.

View Article and Find Full Text PDF