Publications by authors named "Hassan Abdellah Ahmed Ali"

The content stability of commonly used control genes is considered to vary significantly in different independent experimental systems, either in the expression of RNA expression or in the level of DNA content. The present study aimed to examine a panel of six common control genes, including β‑globin (HBB), telomerase (TERT), glyceraldehyde‑3‑phosphate dehydrogenase (GAPDH), albumin (ALB), β‑actin (ACTB) and T cell receptor γ (TRG), in order to evaluate and validate the most reliable control genes for quantitative polymerase chain reaction (qPCR) in investigations for the analysis of fetal‑derived DNA and maternal‑derived DNA in maternal plasma to enable non‑invasive prenatal assessment. Plasma DNA was extracted from the peripheral blood of 20 pregnant femals (gestational age, 18.

View Article and Find Full Text PDF

Quantitative polymerase chain reaction (qPCR) is widely used in quantitation of plasma DNA for non‑invasive prenatal diagnosis (NIPD). Control genes are indispensable as standard normalizers in qPCR analysis, and there is increasing evidence indicating that the content levels of commonly used control genes vary significantly in different independent experiments. The commonly used control genes for DNA quantitation using qPCR in plasma DNA analysis are frequently chosen without any preliminary evaluation of their suitability.

View Article and Find Full Text PDF

Objectives: Dendritic cell (DC)-based tumor immunotherapy needs an immunogenic tumor associated antigen (TAA) and an effective approach for its presentation to lymphocytes. In this study we explored whether transduction of DCs with lentiviruses (LVs) expressing the human interleukin-12 gene could stimulate antigen- specific cytotoxic T cells (CTLs) against human lung cancer cells in vitro.

Methods: Peripheral blood monocyte- derived DCs were transduced with a lentiviral vector encoding human IL-12 gene (LV-12).

View Article and Find Full Text PDF

Increasing the expression of cyclin-cyclin-dependent kinase inhibitors (cyclin-CDK) using small molecule inhibitors is a therapeutic strategy used to suppress cancer cell growth. Decorin (DCN), a functional component of the extracellular matrix, has been implicated in the suppression of cell proliferation by upregulating p21, a cyclin-CDK inhibitor. The purpose of this study was to examine the effect of recombinant decorin on the reactivation of p57KIP2, whose expression is silenced in hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF