The newly recorded Phyllymenia gibesii in the Mediterranean Sea at Alexandria coast of Egypt is regarded as a significant source of bioactive substances and is applied as an antioxidant, anti-inflammatory, and antimicrobial agent. According to the HPLC chromatograms, the acetone extract of P. gibesii comprised ten photosynthetic pigments (chlorophyll-a, chlorophyll-d, α-carotene, β-carotene, phycocyanin, allophycocyanin, antheraxanthin, β-cryptoxanthin, lutein, and violaxanthin).
View Article and Find Full Text PDFBiodegradable plastics are those subjected easily to a degradation process, in which they can be decomposed after disposal in the environment through microbial activity. 30 bioplastic film formulations based only on chitosan film were used in the current investigation as a positive control together with chitosan film recovered from chitin-waste of locally obtained Aristeus antennatus. Additionally, castor oil was used as a plasticizer.
View Article and Find Full Text PDFThe current study describes a straightforward, biologically and environmentally friendly method for creating magnetic iron oxide (γ-FeO) nanoparticles. We report here that the Bacillus subtilis SE05 strain, isolated from offshore formation water near Zaafarana, the Red Sea, Hurghada, Egypt, can produce highly magnetic iron oxide nanoparticles of the maghemite type (γ-FeO). To the best of our knowledge, the ability of this bacterium to reduce FeO has yet to be demonstrated.
View Article and Find Full Text PDFThis study aimed at the production of marine bacterial exopolysaccharides (EPS) as biodegradable and nontoxic biopolymers, competing the synthetic derivatives, with detailed structural and conformational analyses using spectroscopy techniques. Twelve marine bacterial bacilli were isolated from the seawater of Mediterranean Sea, Egypt, then screened for EPS production. The most potent isolate was identified genetically as Bacillus paralicheniformis ND2 by16S rRNA gene sequence of ~99 % similarity.
View Article and Find Full Text PDFExopolysaccharides (EPSs) from microorganisms are essential harmless natural biopolymers used in applications including medications, nutraceuticals and functional foods, cosmetics, and insecticides. Several microbes can synthesize and excrete EPSs with chemical properties and structures that make them suitable for several important applications. Microbes secrete EPSs outside their cell walls, as slime or as a "jelly" into the extracellular medium.
View Article and Find Full Text PDFBioactive compounds were extracted from a locally available brittle star; Ophiocoma dentata, collected from the Red Sea, Egypt. Two new sesquiterpenoids; 8, 11-epoxy-9(15)-himachaladiene-4-ol (O8-ophiocomane) and, 11-epoxy-9(15)-himachaladiene-4-ol (O7-ophiocomane) were isolated and characterized using appropriate techniques. Structure elucidation was estimated via 1D NMR, 2D NMR, FT-IR and mass spectroscopy analyses.
View Article and Find Full Text PDFIn the current study, a significant amount of ulvan was extracted from Ulva lactuca collected from Alexandria coastline, Egypt, using a simple extraction method. According to the chemical analysis, the obtained polysaccharide content is estimated to be 36.50 g/100 g with a high sulfate content of 19.
View Article and Find Full Text PDFChemical studies on have afforded two steroids, 5α-cholesta-24-en-3β,20β-diol-23-one () and 5α-cholesta-9(11)-en-3β, 20β-diol (). Structures compounds and were determined with the help of spectroscopic studies. Compound showed strong antibacterial activity (21.
View Article and Find Full Text PDFExopolysaccharides (EPSs) are high molecular weight polymers consisting of different sugar residues they are preferable for replacing synthetic polymers as they are degradable and nontoxic. Many microorganisms possess the ability to synthesize and excrete exopolysaccharides with novel chemical compositions, properties and structures to have potential applications in different fields. The present study attempt to optimize the production of EPS by marine Bacillus subtilis SH1 in addition to characterization and investigation of different valuable applications.
View Article and Find Full Text PDFJ Egypt Public Health Assoc
April 2016
Background: Nowadays, the Egyptian coasts of the Aqaba and Suez Gulfs, and the Red Sea proper, are under the direct effects of many recreational resorts, urban agglomeration, marine shipping, activity of the phosphate industry, fishing ports, and limited freshwater and sewage surfaces. Therefore, the water, especially those used for recreational activities, must be of a very good quality to be able to increase the national income.
Objectives: To investigate the conventional water-quality bacteria, total coliforms (TC), Escherichia coli (EC), and fecal streptococci (FS), in the Egyptian coastal waters of Suez and Aqaba Gulfs and the Red Sea.