Accurate consumption forecasting is of great importance to grasp the energy consumption habits of consumers and promote the stable and efficient operation of integrated energy system (IES). To this end, this paper proposes an interactive multi-scale convolutional module-based short-term multi-energy consumption forecasting method for IES. Firstly, based on multi-scale feature fusion and multi-energy interactive learning, a novel interactive multi-scale convolutional module is proposed to extract and share the coupling information between energy consumption from different scales without increasing network parameters.
View Article and Find Full Text PDF