The allosteric inhibitor of the mechanistic target of rapamycin (mTOR) everolimus reduces seizures in tuberous sclerosis complex (TSC) patients through partial inhibition of mTOR functions. Due to its limited brain permeability, we sought to develop a catalytic mTOR inhibitor optimized for central nervous system (CNS) indications. We recently reported an mTOR inhibitor () that is able to block mTOR functions in the mouse brain and extend the survival of mice with neuronal-specific ablation of the 1 gene.
View Article and Find Full Text PDFRecent clinical evaluation of everolimus for seizure reduction in patients with tuberous sclerosis complex (TSC), a disease with overactivated mechanistic target of rapamycin (mTOR) signaling, has demonstrated the therapeutic value of mTOR inhibitors for central nervous system (CNS) indications. Given that everolimus is an incomplete inhibitor of the mTOR function, we sought to develop a new mTOR inhibitor that has improved properties and is suitable for CNS disorders. Starting from an in-house purine-based compound, optimization of the physicochemical properties of a thiazolopyrimidine series led to the discovery of the small molecule , a potent and selective brain-penetrant ATP-competitive mTOR inhibitor.
View Article and Find Full Text PDFAn exceptionally hindered class of enantiopure NHC ligands has been developed. While racemic forms had previously been utilized, a scalable and practical route to the enantiopure form of this ligand class is described utilizing a Buchwald-Hartwig N,N-diarylation in a highly sterically demanding environment. Using this newly accessible ligand class, nickel-catalyzed enantioselective reductive coupling reactions of aldehydes and alkynes have been developed.
View Article and Find Full Text PDFA comparative study is disclosed that seeks to highlight the current limitations and challenges that exist in the field of atom-transfer C-H oxidations. State-of-the-art methods are benchmarked in order to showcase clear differences and similarities. A novel Mn-mediated method for C-H oxidation is disclosed that serves as a rapid and simple method for aliphatic C-H hydroxylation.
View Article and Find Full Text PDFThe control of regiochemistry is a considerable challenge in the development of a wide array of catalytic processes. Simple π-components such as alkenes, alkynes, 1,3-dienes, and allenes are among the many classes of substrates that present complexities in regioselective catalysis. Considering an internal alkyne as a representative example, when steric and electronic differences between the two substituents are minimal, differentiating among the two termini of the alkyne presents a great challenge.
View Article and Find Full Text PDFWe outline a strategy to enable non-directed Pd(II)-catalyzed C-H functionalization in the presence of Lewis basic heterocycles. In a high-throughput screen of two Pd-catalyzed C-H acetoxylation reactions, addition of a variety of -containing heterocycles is found to cause low product conversion. A pyridine-containing test substrate is selected as representative of heterocyclic scaffolds that are hypothesized to cause catalyst arrest.
View Article and Find Full Text PDFWe introduce a novel strategy to sample bioactive chemical space, which follows-up on hits from fragment campaigns without the need for a crystal structure. Our results strongly suggest that screening a few hundred or thousand fragments can substantially improve the selection of small-molecule screening subsets. By combining fragment-based screening with virtual fragment linking and HTS fingerprints, we have developed an effective strategy not only to expand from low-affinity hits to potent compounds but also to hop in chemical space to substantially novel chemotypes.
View Article and Find Full Text PDFA diastereoselective approach to isochromans and chromans via Pd(0)-catalyzed carboiodination is reported. The transformations using this methodology display excellent yields and diastereoselectivities as well as broad functional group compatibility. The selectivity observed in these cyclizations, forming isochroman or chroman targets, is postulated to originate from the minimization of A(1,2) strain and axial-axial interactions, respectively.
View Article and Find Full Text PDFA strategy for catalyst-controlled regioselectivity in aldehyde-alkyne reductive couplings has been developed. This strategy is the first where either regiochemical outcome may be selected for a broad range of couplings, without relying on substrate biases or directing effects. The complementary use of small cyclopropenylidene carbene ligands or highly hindered N-heterocyclic carbene ligands allows the regiochemical reversal with unbiased internal alkynes, aromatic internal alkynes, conjugated enynes, or terminal alkynes.
View Article and Find Full Text PDFThe nickel-catalyzed reductive coupling of propargyl alcohols and alkynes proceeds with excellent regiochemical control with an underlying electronic preference that can be supplemented by ligand size effects. The products obtained may be readily converted to substructures that are not directly available by an aldehyde-alkyne reductive coupling. A simple model for how steric and electronic factors are both important in governing regiochemistry in couplings of this type is presented, along with examples of how the effects can combine in either a constructive or destructive manner.
View Article and Find Full Text PDF[reaction: see text] This paper describes the application of peroxide-based oxidants in the Pd(OAc)(2)-catalyzed acetoxylation and etherification of arene and alkane C-H bonds. Oxone in acetic acid and/or methanol proved particularly effective, and these transformations were applied to a wide variety of substrates.
View Article and Find Full Text PDF