Aβ peptides are known to bind neural plasma membranes in a process leading to the deposit of Aβ-enriched plaques. These extracellular structures are characteristic of Alzheimer's disease, the major cause of late-age dementia. The mechanisms of Aβ plaque formation and deposition are far from being understood.
View Article and Find Full Text PDFThe amyloidogenic Aβ peptides are widely considered as a pathogenic agent in Alzheimer's disease. Aβ(1-42) would form aggregates of amyloid fibrils on the neuron plasma membranes, thus perturbing neuronal functionality. Conflicting data are available on the influence of bilayer order on Aβ(1-42) binding to membranes.
View Article and Find Full Text PDFAβ42 peptide binds neuronal membranes and aggregates into plaques that are characteristic of Alzheimer's disease. Aβ42 peptide has been proposed to be generated in membrane (nano) domains in the liquid-ordered phase, ganglioside GM1 being a major facilitator of peptide binding to the membrane. The peptide exists in solution in various degrees of aggregation, either monomers, oligomers or fibrils, of which oligomers appear to be particularly toxic.
View Article and Find Full Text PDFβ-Amyloid (Aβ) is a 39-43 residue peptide involved in the pathogenesis of Alzheimer's disease. Aβ deposits onto the cells and gives rise to the plaques that are characteristic of the disease. In an effort to understand the molecular mechanism of plaque formation, we have examined the interaction of Aβ42, considered to be the most pathogenic of the peptides, with lipid bilayers consisting of 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) to which small amounts of GM1 ganglioside (1-5 mol%) were incorporated.
View Article and Find Full Text PDFThe binding of Aβ42 peptide monomers to sphingomyelin/cholesterol (1:1 mol ratio) bilayers containing 5 mol% gangliosides (either GM1, or GT1b, or a mixture of brain gangliosides) has been assayed by density gradient ultracentrifugation. This procedure provides a direct method for measuring vesicle-bound peptides after non-bound fraction separation. This centrifugation technique has rarely been used in this context previously.
View Article and Find Full Text PDFBackground/aims: To test whether the physiological regulation of the cardiac Kv4 channels by the Ca/calmodulin-dependent protein kinase II (CaMKII) is restricted to lipid rafts and whether the interactions observed in rat cardiomyocytes also occur in the human ventricle.
Methods: Ventricular myocytes were freshly isolated from Sprague-Dawley rats. I was recorded by the whole-cell Patch-Clamp technique.
The mechanisms of Pb(II) toxicity have been studied in human red blood cells using confocal microscopy, immunolabeling, fluorescence-activated cell sorting and atomic force microscopy. The process follows a sequence of events, starting with calcium entry, followed by potassium release, morphological change, generation of ceramide, lipid flip-flop and finally cell lysis. Clotrimazole blocks potassium channels and the whole process is inhibited.
View Article and Find Full Text PDFBackground: Cancer is a worldwide health problem and pain is among the most common and unpleasant effects affecting well-being of cancer patients. Accurate description of pain can help physicians to improve its management. Many English tools have been developed to assess pain.
View Article and Find Full Text PDFThe effects of increasing amounts of palmitoylceramide (pCer) on human red blood cell lipid membranes have been studied using atomic force microscopy of supported lipid bilayers, in both imaging (bilayer thickness) and force-spectroscopy (nanomechanical resistance) modes. Membranes appeared homogeneous with pCer concentrations up to 10 mol % because of the high concentration of cholesterol (Chol) present in the membrane (∼45 mol %). However, the presence of pCer at 30 mol % gave rise to a clearly distinguishable segregated phase with a nanomechanical resistance 7-fold higher than the continuous phase.
View Article and Find Full Text PDFDiacylglycerol (DAG)-induced activation of phosphatidylinositol-phospholipase C (PI-PLC) was studied with vesicles containing PI, either pure or in mixtures with dimyristoyl phosphatidylcholine, distearoyl phosphatidylcholine, sphingomyelin, or galactosylceramide, used as substrates. At 22°C, DAG at 33 mol % increased PI-PLC activity in all of the mixtures, but not in pure PI bilayers. DAG also caused an overall decrease in diphenylhexatriene fluorescence polarization (decreased molecular order) in all samples, and increased overall enzyme binding.
View Article and Find Full Text PDFPolarized membrane morphogenesis is a fundamental activity of eukaryotic cells. This process is essential for the biology of cells and tissues, and its execution demands exquisite temporal coordination of functionally diverse membrane signaling reactions with high spatial resolution. Moreover, mechanisms must exist to establish and preserve such organization in the face of randomizing forces that would diffuse it.
View Article and Find Full Text PDFRecent discoveries on the presence and location of phosphoinositides in the eukaryotic cell nucleoplasm and nuclear membrane prompted us to study the putative interaction of chromatin components with these lipids in model membranes (liposomes). Turbidimetric studies revealed that a variety of histones and histone combinations (H1, H2AH2B, H3H4, octamers) caused a dose-dependent aggregation of phosphatidylcholine vesicles (large unilamellar vesicle or small unilamellar vesicle) containing negatively charged phospholipids. 5 mol % phosphatidylinositol-4-phosphate (PIP) was enough to cause extensive aggregation under our conditions, whereas with phosphatidylinositol (PI) at least 20 mol % was necessary to obtain a similar effect.
View Article and Find Full Text PDFRecent research regarding 2-hydroxylated fatty acids (2OHFAs) showed clear evidence of their benefits in the treatment of cancer, inflammation, and neurodegenerative disorders such as Alzheimer's disease. Monolayer compressibility isotherms and isothermal titration calorimetry of 2OHFA (C18-C22) in phosphatidylcholine/phosphatidylethanolamine/sphingomyelin/cholesterol (1:1:1:1 mole ratio), a mixture that mimics the composition of mammalian plasma membrane, were performed to assess the membrane binding capacity of 2OHFAs and their natural, nonhydroxylated counterparts. The results show that 2OHFAs are surface-active substances that bind membranes through exothermic, spontaneous processes.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurodegenerative pathology with relevant unmet therapeutic needs. Both natural aging and AD have been associated with a significant decline in the omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA), and accordingly, administration of DHA has been proposed as a possible treatment for this pathology. However, recent clinical trials in mild-to-moderately affected patients have been inconclusive regarding the real efficacy of DHA in halting this disease.
View Article and Find Full Text PDFMultiple data are available on the self-assembly of mixtures of bilayer-forming amphiphiles, particularly phospholipids and micelle-forming amphiphiles, commonly denoted detergents. The structure of such mixed assemblies has been thoroughly investigated, described in phase diagrams, and theoretically rationalized in terms of the balance between the large spontaneous curvature of the curvophilic detergent and the curvophobic phospholipids. In this critical review, we discuss the mechanism of this process and try to explain the actual mechanism involved in solubilization.
View Article and Find Full Text PDFRat erythrocytes, or erythrocyte membrane ghosts, have been subjected to either chronic (drinking water containing 15 mM lead acetate for 3 months) or acute (10(-9)-10(-2 )M lead acetate for 1 h) Pb(2+) treatments and subsequent changes in membrane properties have been measured. Pb(2+) concentration in chronically treated rat plasma was 1.8 μM, which is one order of magnitude above normal values.
View Article and Find Full Text PDFThe early stages of Triton X-100 solubilization of bilayers consisting of sphingomyelin/ceramide (SM/Cer) mixtures have been studied using a combination of calorimetric and spectroscopic techniques. Compositions based on sphingomyelin, containing up to 30 mol% Cer, at 4, 20 and 50°C have been examined. The presence of Cer does not modify the affinity (in terms of ΔG of binding per mol total lipid) of the SM-based bilayers for Triton X-100, although it does increase the amount of detergent required for the onset of solubilization.
View Article and Find Full Text PDFTrends Biochem Sci
February 2013
Although detergents are routine tools in biomembrane research, their use remains empirical. We propose that solubilization is the result of a balance between two parameters: (i) the energy associated with bending of phospholipid monolayers into a curved micellar surface, and (ii) the energy associated with filling the void in the center of the resultant mixed micelle. In this review, we show that reliable data on the phase boundaries, and their dependence on various conditions, are consistent with this hypothesis, even if the data might have been interpreted differently.
View Article and Find Full Text PDFTo explore the initial stages of amyloid β peptide (Aβ42) deposition on membranes, we have studied the interaction of Aβ42 in the monomeric form with lipid monolayers and with bilayers in either the liquid-disordered or the liquid-ordered (L(o)) state, containing negatively charged phospholipids. Molecular dynamics (MD) simulations of the system have been performed, as well as experimental measurements. For bilayers in the L(o) state, in the absence of the negatively charged lipids, interaction is weak and it cannot be detected by isothermal calorimetry.
View Article and Find Full Text PDFIt has been repeatedly observed that lipid bilayers in the gel phase are solubilized by lower concentrations of Triton X-100, at least within certain temperature ranges, or other nonionic detergents than bilayers in the fluid phase. In a previous study, we showed that detergent partition coefficients into the lipid bilayer were the same for the gel and the fluid phases. In this contribution, turbidity, calorimetry, and 31P-NMR concur in showing that bilayers in the gel state (at least down to 13-20°C below the gel-fluid transition temperature) become saturated with detergent at lower detergent concentrations than those in the fluid state, irrespective of temperature.
View Article and Find Full Text PDFSoluble amphiphiles, or detergents, are known to produce a number of structural and dynamic effects on membranes, even at concentrations below those causing membrane solubilization (i.e. in the so-called stage I of detergent-membrane interaction).
View Article and Find Full Text PDFGiant unilamellar vesicles (GUVs) constitute a cell-sized model membrane system that allows direct visualization of particular membrane-related phenomena, such as domain formation, at the level of single vesicles using fluorescence microscopy-related techniques. Currently available protocols for the preparation of GUVs work only at very low salt concentrations, thus precluding experimentation under physiological conditions. In addition, the GUVs thus obtained lack membrane compositional asymmetry.
View Article and Find Full Text PDFThe distribution of phosphatidylcholine (PC) and sphingomyelin (SM) between the solubilized (micellar) and non-solubilized (lamellar) fractions arising from bilayers composed of PC and SM, with or without cholesterol (Chol) has been measured under conditions of partial, incomplete solubilization by Triton X-100. Quantitation is achieved by (31)P-NMR determination of the composition of mixed micelles in the range of bilayer-micelle coexistence. We find that the solubilized fraction of bilayers consisting of binary mixtures of PC and SM is rich in SM, as expected from previous data on solubilization of pure PC and pure SM liposomes.
View Article and Find Full Text PDFSerum albumin is an abundant protein in blood plasma, that is well-known for its ability to transport hydrophobic biomolecules and drugs. Recent hypotheses propose that serum albumin plays a role in the regulation of lipid metabolism in addition to its lipid transport properties. The present work explores the capacity of bovine serum albumin (BSA) to extract diacylglycerols (DAG) from phospholipid bilayers, and the inhibition of such interaction by divalent cations.
View Article and Find Full Text PDFBackground/aims: In myocytes from diabetic hearts, the reduction in the amplitude of the transient outward potassium current (I(to)) and the acceleration of its inactivation contribute to the action potential duration lengthening. Whereas the reduced amplitude is attributable to a reduced support of trophic factors, the mechanism underlying the acceleration of inactivation remains unknown. Ca(2+)/Calmodulin-dependent protein kinase II (CaMKII) modifies the inactivation kinetics of I(to).
View Article and Find Full Text PDF