Publications by authors named "Hasmat Khan"

A proper control of defects in TiO thin films is challenging work for enhancing the photoelectrochemical (PEC) efficiency in water splitting processes. Additionally, a deep understanding of how defects affect the PEC performance of TiO thin films is of great interest for achieving better performance. With these aims, we prepared defective amorphous TiO thin films at various growth temperatures by atomic layer deposition using tetrakis(dimethylamido)titanium as the Ti precursor.

View Article and Find Full Text PDF

To fabricate high efficiency photoanodes for water oxidation, it is highly required to engineer their nanoporous architecture and interface to improve the charge separation and transport efficiency. By focusing on this aspect, we developed hierarchical nanoporous BiVO (BV) from solution processed two-dimensional BiOI (BI) crystals. The orientation of the BI crystals was controlled by changing the solvent volume ratios of ethylene glycol (EG) to ethanol (ET), which resulted in different hierarchical and planar BV morphologies through a chemical treatment followed by thermal heating.

View Article and Find Full Text PDF

Extended and oriented rutile nanowires (NWs) hold great promise for numerous applications because of their various tunable physicochemical properties in air and/or solution media, but their direct synthesis on a wide range of conducting substrates remains a significant challenge. Their device performance is governed by relevant NW geometries that cannot be fully controlled to date by varying bulk synthetic conditions. Herein, orientation engineering of rutile SnO NWs on a variety of conducting substrates by atomic layer deposition (ALD) seeding has been investigated.

View Article and Find Full Text PDF

Present work reports on synthesis and anti-biofilm activity as well as food packaging application of Ag-ZnO-reduce graphene oxide (rGO)-polyethylene glycol (PEG) (AZGP) nanocomposites via adopting room temperature solution process by varying silver nitrate content (up to 0.1 M) with fixed content of graphene oxide and PEG used in the precursors. Presence of Ag and ZnO nanoparticles (NPs) distributed uniformly over rGO nanosheets has been confirmed by X-ray diffraction and transmission electron microscopic analyses whereas FTIR, Raman, UV-Visible and X-ray photoelectron spectral studies have been performed to confirm the existence of chemical interaction/complexation that happened between the available oxygen functionalities of rGO and PEG with the inorganic moieties (Ag-ZnO/Zn) of AZGP samples.

View Article and Find Full Text PDF