Publications by authors named "Hasitha Weerasinghe"

Cancer is a disease that arises from the uncontrolled growth of abnormal (tumor) cells in an organ and their subsequent spread into other parts of the body. If tumor cells spread to surrounding tissues or other organs, then the disease is life-threatening due to limited treatment options. This work applies an agent-based model to investigate the effect of intra-tumoral communication on tumor progression, plasticity, and invasion, with results suggesting that cell-cell and cell-extracellular matrix (ECM) interactions affect tumor cell behavior.

View Article and Find Full Text PDF

The rapid development of organic-inorganic hybrid perovskite solar cells has resulted in laboratory-scale devices having power conversion efficiencies that are competitive with commercialised technologies. However, hybrid perovskite solar cells are yet to make an impact beyond the research community, with translation to large-area devices fabricated by industry-relevant manufacturing methods remaining a critical challenge. Here we report the first demonstration of hybrid perovskite solar cell modules, comprising serially-interconnected cells, produced entirely using industrial roll-to-roll printing tools under ambient room conditions.

View Article and Find Full Text PDF

Perovskite solar cells (PSCs) have attracted tremendous attention as a promising alternative candidate for clean energy generation. Many attempts have been made with various deposition techniques to scale-up manufacturing. Slot-die coating is a robust and facile deposition technique that can be applied in large-area roll-to-roll (R2R) fabrication of thin film solar cells with the advantages of high material utilization, low cost and high throughput.

View Article and Find Full Text PDF

Quantitative modelling is increasingly important in cancer research, helping to integrate myriad diverse experimental data into coherent pictures of the disease and able to discriminate between competing hypotheses or suggest specific experimental lines of enquiry and new approaches to therapy. Here, we review a diverse set of mathematical models of cancer cell plasticity (a process in which, through genetic and epigenetic changes, cancer cells survive in hostile environments and migrate to more favourable environments, respectively), tumour growth, and invasion. Quantitative models can help to elucidate the complex biological mechanisms of cancer cell plasticity.

View Article and Find Full Text PDF

Phenyl-C-butyric acid methyl ester (PCBM) is universally used as the electron-transport layer (ETL) in the low-cost inverted planar structure of perovskite solar cells (PeSCs). PCBM brings tremendous challenges in upscaling of PeSCs using industry-relevant methods due to its aggregation behavior, which undermines the power conversion efficiency and stability. Herein, we highlight these, seldom reported, challenges with PCBM.

View Article and Find Full Text PDF
Article Synopsis
  • The emerging perovskite solar technology faces challenges in scaling up production and ensuring long-term stability for commercial use.
  • A study compared the performance of ZnO and TiO2 as electron-selective layers for low-temperature processing of perovskite solar cells on flexible substrates.
  • Results showed that TiO2 allows for better thermal stability and overall performance compared to ZnO, which suffers from rapid degradation when used with perovskite materials.
View Article and Find Full Text PDF